Advances in Applied Ceramics最新文献

筛选
英文 中文
Special Issue: ‘Advanced Ceramics and Coatings for Wear and Corrosion Applications’ 特刊:“用于磨损和腐蚀应用的先进陶瓷和涂层”
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-10-17 DOI: 10.1080/17436753.2023.2268436
Eugene Medvedovski
{"title":"Special Issue: ‘Advanced Ceramics and Coatings for Wear and Corrosion Applications’","authors":"Eugene Medvedovski","doi":"10.1080/17436753.2023.2268436","DOIUrl":"https://doi.org/10.1080/17436753.2023.2268436","url":null,"abstract":"","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influences on the mechanical and physical properties of hot-press moulding alkali-activated slag (HP-FRAASC) composite with various fibers 不同纤维对热压成型碱活性渣(HP-FRAASC)复合材料力学和物理性能的影响
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-10-16 DOI: 10.1080/17436753.2023.2265194
Haonian Wang, Lixin Xu, Sirui Zang, Dajian Huang, Song Wang, Qing Guo, Jiale Yang, Changjun Jiang
{"title":"Influences on the mechanical and physical properties of hot-press moulding alkali-activated slag (HP-FRAASC) composite with various fibers","authors":"Haonian Wang, Lixin Xu, Sirui Zang, Dajian Huang, Song Wang, Qing Guo, Jiale Yang, Changjun Jiang","doi":"10.1080/17436753.2023.2265194","DOIUrl":"https://doi.org/10.1080/17436753.2023.2265194","url":null,"abstract":"ABSTRACTIn this study, we will apply the hot-press moulding method for the first time to the preparation of alkali-activated slag composites (AASC) and incorporate 1vol.-%, 3vol.-%, 5vol.-%, and 7vol.-% steel, copper, and carbon fibres into the matrix in order to investigate the characteristics of the HP-AASC and fibre reinforced (HP-FRAASC) in terms of compressive strength, flexural strength, impact toughness, and bulk density of HP-AASC and HP-FRAASC. Results show that the composites have good flexural strength, compressive strength, and impact toughness when the content of steel fibres is 5 vol.-%, copper fibres are 7 vol.-%, and carbon fibres are 1–3 vol.-%. It was observed from each sample of HP-FRAASC and HP-AASC that the HP-AASC samples had lower porosity, better density, and an easy preparation process, which can be used as a suitable preparation method for this material.KEYWORDS: Alkali-activated slagfibre reinforcementhot-press mouldingmechanical propertiesporositybulk density Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printed porous Al 2 O 3 membrane coated with hydrophilic modified titanium dioxide particles for large-flux oil/water separation 3d打印多孔氧化铝膜涂覆亲水性改性二氧化钛颗粒大通量油/水分离
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-10-12 DOI: 10.1080/17436753.2023.2265203
Hao Li, Hui Mei, Zhipeng Jin, Longkai Pan, Laifei Cheng, Litong Zhang
{"title":"3D-printed porous Al <sub>2</sub> O <sub>3</sub> membrane coated with hydrophilic modified titanium dioxide particles for large-flux oil/water separation","authors":"Hao Li, Hui Mei, Zhipeng Jin, Longkai Pan, Laifei Cheng, Litong Zhang","doi":"10.1080/17436753.2023.2265203","DOIUrl":"https://doi.org/10.1080/17436753.2023.2265203","url":null,"abstract":"ABSTRACTA viable material to address oil pollution in water is the super wetting surface, which is accessible to realise the separation of oil and water. According to Young’s equation, hydrophobic/oleophilic materials are theoretically simple to realise and have a wide range of applications. The hydrophobic/oleophilic membrane, however, has a poor separating effect on the mixture in which the oil has a lower density than water. Hence, to optimise the oil/water separation performance, hydrophilic modified titanium dioxide particles were introduced to a novel porous superhydrophilic/oleophobic substrate fabricated by 3D printing technology in this work. The contact angle of n-hexadecane on the membrane surface was about 130°, which was an oleophobic surface. The oil/water separation efficiency of the 0.7 mm thick oleophobic membrane was over 98% and the penetration flux was up to 11,191 L m−2 h−1, indicating that the membranes prepared in this work might be used in high-flux oil/water separation applications. This study provides an efficient, simple, and reliable method for preparing oil/water separation materials with 3D printing technology, and may have broader significance among the academic and industry communities.KEYWORDS: 3D printingsuperhydrophilic/oleophobic membraneoil/water separationhydrophilic modificationporous structure AcknowledgementsWe would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and TEM.Disclosure statementNo potential conflict of interest was reported by the author(s).Declaration of competing interestThe authors declare that they have no known competing financial interests or personal relations that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was financially supported by the Fundamental Research Funds for the Central Universities [grant number 3102019PJ008 and 3102018JCC002]; National Key Research and Development Program of China [grant number 2021YFB3701500]; National Natural Science Foundation of China [grant number 52072306].","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of porous ceramsite from municipal sludge and its structure characteristics 城市污泥制备多孔陶粒及其结构特性研究
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-10-11 DOI: 10.1080/17436753.2023.2265192
Junping Meng, Zhenxiao Cui, Chandrasekar Srinivasakannan, Xinhui Duan, Jinsheng Liang, Guangyan Tian, Zhiling Yang, Xiangying Wei
{"title":"Preparation of porous ceramsite from municipal sludge and its structure characteristics","authors":"Junping Meng, Zhenxiao Cui, Chandrasekar Srinivasakannan, Xinhui Duan, Jinsheng Liang, Guangyan Tian, Zhiling Yang, Xiangying Wei","doi":"10.1080/17436753.2023.2265192","DOIUrl":"https://doi.org/10.1080/17436753.2023.2265192","url":null,"abstract":"ABSTRACTIn this paper, the municipal sludge was used as the main raw material to prepare a kind of porous ceramsite. The porous ceramsite composition of 50 wt-% of municipal sludge, 10 wt-% of municipal solid waste incineration bottom ash, 45 wt-% of waste glass powders, sintering temperature of 900°C and holding duration of 30 min. The best of the ceramsite synthesised had 1-h water absorption capacity of 51.53%, apparent porosity of 64.14% and pore volume 0.671 mL g−1. During the sintering process, the waste glass powders generated a large amount of liquid phase, wrapt the gas produced by organic matter, and formed a porous structure inside the ceramic particles. At the same time, the silica and aluminium were combined to form Kyanite, which constitutes the basic skeleton of the ceramic particles showing a certain strength. Besides, silicon oxide and calcium silicate generated Wollastonite improving the corrosion resistance of ceramic particles as well. The adsorption capacity of the prepared porous ceramsite modified by acid combined with sodium citrate was 3.1 mg g−1 using the prepared porous ceramsite as substrate. The adsorption kinetics of ammonia nitrogen by porous ceramics conforms to the quasi-second-order kinetic model, and the adsorption isotherm model conforms to the Langmuir model. The findings lay a theoretical foundation for the integration of resource utilisation of solid waste and later application.KEYWORDS: Municipal sludgeapparent porosityporous ceramsitepore structureresource recovery Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was funded by the National Key Research and Development Program of China [grant number 2019YFC1904605].","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136098138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gel-casting for manufacturing porous alumina ceramics with complex shapes for transpiration cooling 凝胶铸造用于制造具有复杂形状的多孔氧化铝陶瓷,用于蒸腾冷却
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-10-10 DOI: 10.1080/17436753.2023.2265204
Y. Belrhiti, P. Kerth, M. McGilvray, L. Vandeperre
{"title":"Gel-casting for manufacturing porous alumina ceramics with complex shapes for transpiration cooling","authors":"Y. Belrhiti, P. Kerth, M. McGilvray, L. Vandeperre","doi":"10.1080/17436753.2023.2265204","DOIUrl":"https://doi.org/10.1080/17436753.2023.2265204","url":null,"abstract":"","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136293464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced densification and ionic conductivity of LLZO by flash sintering 闪蒸烧结增强LLZO的致密化和离子电导率
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-10-05 DOI: 10.1080/17436753.2023.2265193
Amirreza Sazvar, Hossein Sarpoolaky, Mohammad Golmohammad
{"title":"Enhanced densification and ionic conductivity of LLZO by flash sintering","authors":"Amirreza Sazvar, Hossein Sarpoolaky, Mohammad Golmohammad","doi":"10.1080/17436753.2023.2265193","DOIUrl":"https://doi.org/10.1080/17436753.2023.2265193","url":null,"abstract":"ABSTRACTFlash sintering arouses the interest since high-density ceramics can be obtained at shorter dwell times and lower temperatures than conventional sintering. In this study, the cubic garnet Li6.25Al0.25La3Zr2O12 (Al-LLZO) was successfully synthesised by the solid-state method. The powders were uniaxially pressed and were subjected to flash sintering at 850°C in a tube furnace under a DC bias using various current densities. It is evidenced that control of the flash electric current is a crucial factor for densification of Al-LLZO. The sample sintered in 50 V cm−1 and 200 mA mm−2 showed a cubic LLZO, 94 ± 0.4% relative density, 0.37 mS cm−1 total ionic conductivity and 0.32 eV activation energy. In addition, it was demonstrated that increasing the current density had a considerable impact on the relative density. This outstanding ionic conductivity might be due to the lower lithium loss and higher density as a result of flash sintering method applied.KEYWORDS: GarnetLLZOlithium lossflash sinteringsolid-state batteries Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is based upon research funded by Iran National Science Foundation (INSF) under project No. 4000823.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135480732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sintering, microstructure, and mechanical properties of ZrO 2 -doped Al 2 O 3 zro2掺杂al2o3的烧结、微观结构及力学性能
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-10-03 DOI: 10.1080/17436753.2023.2265191
Biswajit Baruah, Rahul Anand, Shantanu K. Behera
{"title":"Sintering, microstructure, and mechanical properties of ZrO <sub>2</sub> -doped Al <sub>2</sub> O <sub>3</sub>","authors":"Biswajit Baruah, Rahul Anand, Shantanu K. Behera","doi":"10.1080/17436753.2023.2265191","DOIUrl":"https://doi.org/10.1080/17436753.2023.2265191","url":null,"abstract":"ABSTRACTIn the present work, the effect of Zr-doping on the sintering, microstructure development, and mechanical properties of polycrystalline Al2O3 was studied. Dopant concentrations of 830 and 2070ppm cationic ratio of Zr in Al2O3 corresponding to 2000 and 5000 wt. ppm of ZrO2 in Al2O3, respectively, were used. The sintering schedule of undoped as well as Zr-doped Al2O3 samples was optimised following a series of precoarsening experiments. The Zr-doped Al2O3 ceramics exhibited controlled grain size and improved density. Upon increasing the Zr-dopant concentration from 830 cat. ppm to 2070 cat. ppm. Zr-doped Al2O3 ceramics having a refined microstructure with a homogeneous distribution of controllably grown ZrO2 in Al2O3 matrix was obtained. Microhardness of the Zr-doped samples showed negligible dependence with Zr-doping, whereas mechanical strength was found to improve with it. The improvement in strength was attributed to the combined effect of improved sinter density, microstructural refinement, and grain-boundary strengthening.KEYWORDS: Al2O3ZrO2sinteringmicrostructurehardnessstrength AcknowledgementThe authors gratefully acknowledge the support of Mr Sarbapi Mukherjee, Almatis India, for the supply of alumina powders for this work.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe authors declare that the data supporting the findings of this study and supporting documents will be made available on reasonable request.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135744615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time dependent deformation of LaCoO 3 based perovskites at different temperatures: ferroelastic and non-ferroelastic creep behaviour 不同温度下lacoo3基钙钛矿的时效变形:铁弹性和非铁弹性蠕变行为
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-09-28 DOI: 10.1080/17436753.2023.2262277
M. Lugovy, M. Bondar, N. Orlovskaya, M.J. Reece, T. Graule, G. Blugan
{"title":"Time dependent deformation of LaCoO <sub>3</sub> based perovskites at different temperatures: ferroelastic and non-ferroelastic creep behaviour","authors":"M. Lugovy, M. Bondar, N. Orlovskaya, M.J. Reece, T. Graule, G. Blugan","doi":"10.1080/17436753.2023.2262277","DOIUrl":"https://doi.org/10.1080/17436753.2023.2262277","url":null,"abstract":"ABSTRACTAnalysis of the creep behaviour of ferroelastic LaCoO3 and La0.8Ca0.2CoO3 perovskites at room and elevated temperatures is presented. It was found that the creep behaviour of the two LaCoO3-based compositions was determined by ferroelastic and non-ferroelastic creep strain components. Both the ferroelastic and non-ferroelastic creep strain components showed a strong dependence on bending stress. The ferroelastic creep depends on the coercive stress in LaCoO3 based perovskites, which in turn is a function of temperature. In addition, the ferroelastic creep strain has the same sign as the total strain of cobaltites upon loading, however, it has the opposite sign relative to the total strain upon unloading. Non-ferroelastic creep was negligibly small in both perovskites at low temperatures, however, its contribution toward the total creep increased significantly at elevated temperature. Non-ferroelastic creep strain has the same sign as the total strain both upon loading and upon unloading.KEYWORDS: Perovskiteferroelastic creepnon-ferroelastic creepcoercive stressbending AcknowledgementsDr. Lugovy’s work at Empa was supported by Swiss National Science Foundation via the Scientific Exchanges grants (proposal MENDEL). It is also important to highlight the circumstances in which the paper was prepared. The authors jointly worked to prepare results during 2021 and 2022, when NO visited Ukraine as a Visiting Professor. She has to run away from Kyiv early morning February 24th, 2022, when Russian terrorists started bombing Ukraine. NO journey to the western Ukrainian border with Poland took 4 days with sleepless nights by bus, but by February 28th, 2022 NO was able to safely arrive in Poland and shortly depart back home to the US. However, two of her colleagues, ML and MB remained in Ukraine and decided to continue working on the paper using Zoom calls and email exchanges. In March 2022, loud air ride siren could be heard during Zoom calls in Kyiv along with sounds of the explosions and nearby artillery. Nevertheless the paper was almost finished by the end of March 2022 and now it is ready to be presented to the attention of the scientific community.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wear behaviour of alumina-toughened-zirconia composites with different phase arrangement under ball-on-flat tribological tests 不同相排列的铝-增韧-氧化锆复合材料的球-平摩擦磨损性能
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-09-22 DOI: 10.1080/17436753.2023.2246270
Marek Grabowy, Agnieszka Wojteczko, Piotr Osada, Grzegorz Wiązania, Zbigniew Pędzich
{"title":"Wear behaviour of alumina-toughened-zirconia composites with different phase arrangement under ball-on-flat tribological tests","authors":"Marek Grabowy, Agnieszka Wojteczko, Piotr Osada, Grzegorz Wiązania, Zbigniew Pędzich","doi":"10.1080/17436753.2023.2246270","DOIUrl":"https://doi.org/10.1080/17436753.2023.2246270","url":null,"abstract":"ABSTRACTAn alumina-toughened zirconia (ATZ) material, fabricated using a procedure consisting of the common sintering of two different zirconia powders, was tested using the ball-on-disc method in a temperature range between room temperature and 400°C. Tetragonal zirconia balls were used as a counterpart. Two different types of microstructure were designed, one consisting of separated alumina inclusions in a zirconia matrix and another one which was a combination of two continuous phases, penetrating the whole volume of the composite. It was detected that at elevated temperatures both materials showed a distinct decrease in the wear rate. Composite with a low alumina content showed minimal wear rate at 300°C and composite with higher amount of alumina showed it at 400°C. There are some observations that this minimal wear rate result is connected with a pseudoplastic behaviour of a layer formed between co-operating elements of tribological pair. This layer is composed of the debris of both, sample and counterpart, and its behaviour during sliding is connected with the mean grain size of this debris which is correlated with the mean grain size of sintered material.KEYWORDS: Alumina toughened zirconiaTribologySliding wearBall-on-disc test Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by subvention of the Polish State Ministry of Education and Science for AGH University of Science and Technology under projects 16.16.160.557 and 16.16.130.942. Tribological investigations were performed in Laboratory of Tribology and Surface Engineering of Department of Machine Design and Technology of AGH University. Microstructural investigations were performed in Laboratory of Scanning Electron Microscopy and Microanalysis of Faculty of Materials Science and Ceramics of AGH University.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving mechanical properties of carbon and tool steels via chromizing 通过渗铬提高碳钢和工具钢的力学性能
4区 材料科学
Advances in Applied Ceramics Pub Date : 2023-09-14 DOI: 10.1080/17436753.2023.2238987
Tomas Grejtak, Jun Qu
{"title":"Improving mechanical properties of carbon and tool steels via chromizing","authors":"Tomas Grejtak, Jun Qu","doi":"10.1080/17436753.2023.2238987","DOIUrl":"https://doi.org/10.1080/17436753.2023.2238987","url":null,"abstract":"ABSTRACTSteels are commonly used in high-performance demanding applications due to their favourable mechanical properties. Various surface engineering techniques have been developed for steels, among which chromizing is an affordable high-throughput case-hardenig process for improved surface hardness and wear resistance while retaining the substrate ductility and toughness. In this work, tribological testing along with nano- and micro-indentation and morphological and composional characterisation were used to understand the effects of the chromizing process on the AISI 1095 carbon steel, 52100 bearing steel and A2, D2 and M2 tool steels. The results of this study demonstrate that the chromizing treatment of low-cost 1095 and 52100 steels significantly improves their wear and hardness properties to a level comparable to the more costly tool steels. While chromizing also increased the hardness of the tool steels, it had little improvement on the wear resistance for the D2 and M2 tool steels.KEYWORDS: Case chromizingsteelabrasive wearnanoindentation AcknowledgementsThe authors would like to thank Jim Keiser from Oak Ridge National Laboratory (ORNL), Oyelayo O. Ajayi and George Fenske from Argonne National Laboratory for their thoughtful comments and insight, Briar Faulkner from Applied Thermal Coatings for conducting chromizing of the steel samples, and Brain Long and Caitlin Duggan from ORNL for sectioning and polishing the samples for morphological and nanoindentation studies. This research was sponsored by the Feedstock Conversion Interface Consortium (FCIC) of the Bioenergy Technologies Office, Office of Energy Efficiency and Renewable Energy, United States Department of Energy (DOE).Disclosure statementNo potential conflict of interest was reported by the authors.Author NoteThis manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish, or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).Additional informationFundingThis work was supported by Office of Energy Efficiency and Renewable Energy: [Grant Number].","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信