American journal of neurodegenerative disease最新文献

筛选
英文 中文
Aging, circadian rhythms and depressive disorders: a review. 衰老、昼夜节律和抑郁症:综述。
Inês Campos Costa, Hugo Nogueira Carvalho, Lia Fernandes
{"title":"Aging, circadian rhythms and depressive disorders: a review.","authors":"Inês Campos Costa,&nbsp;Hugo Nogueira Carvalho,&nbsp;Lia Fernandes","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>Aging is typically associated with impairing behavioral patterns that are frequently and inappropriately seen as normal. Circadian rhythm changes and depressive disorders have been increasingly proposed as the two main overlapping and interpenetrating changes that take place in older age. This study aims to review the state of the art on the subject concerning epidemiology, pathophysiological mechanism, clinical findings and relevance, as well as available treatment options.</p><p><strong>Materials and methods: </strong>A nonsystematic review of all English language PubMed articles published between 1995 and December 2012 using the terms \"circadian rhythms\", \"mood disorders\", \"depression\", \"age\", \"aging\", \"elderly\" and \"sleep\".</p><p><strong>Discussion and conclusion: </strong>Sleep disorders, mainly insomnia, and depression have been demonstrated to be highly co-prevalent and mutually precipitating conditions in the elderly population. There is extensive research on the pathophysiological mechanisms through which age conditions circadian disruption, being the disruption of the Melatonin system one of the main changes. However, research linking clearly and unequivocally circadian disruption and mood disorders is still lacking. Nonetheless, there are consistently described molecular changes on shared genes and also several proposed pathophysiological models linking depression and sleep disruption, with clinical studies also suggesting a bi-directional relationship between these pathologies. In spite of this suggested relation, clinical evaluation of these conditions in elderly patients consistently reveals itself rather complicated due to the frequently co-existing co-morbidities, some of them having been demonstrated to alter sleep and mood patters. This is the case of strokes, forms of dementia such as Alzheimer and Parkinson, several neurodegenerative disorders, among others. Although there are to the present no specific treatment guidelines, available treatment options generally base themselves on the premise that depression and sleep disturbances share a bidirectional relationship and so, the adoption of measures that address specifically one of the conditions will reciprocally benefit the other. Treatment options range from Cognitive Behavioral Therapy, Chronotherapy, and Light therapy, to drugs such as Melatonin/Melatonin agonists, antidepressants and sedatives.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 4","pages":"228-46"},"PeriodicalIF":0.0,"publicationDate":"2013-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852564/pdf/ajnd0002-0228.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31938547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity of pathological features other than Lewy bodies in familial Parkinson's disease due to SNCA mutations. SNCA突变导致家族性帕金森病除路易体外病理特征的多样性
American journal of neurodegenerative disease Pub Date : 2013-11-29 eCollection Date: 2013-01-01
Hiroshige Fujishiro, Akiko Yamashita Imamura, Wen-Lang Lin, Hirotake Uchikado, Margery H Mark, Lawrence I Golbe, Katerina Markopoulou, Zbigniew K Wszolek, Dennis W Dickson
{"title":"Diversity of pathological features other than Lewy bodies in familial Parkinson's disease due to SNCA mutations.","authors":"Hiroshige Fujishiro,&nbsp;Akiko Yamashita Imamura,&nbsp;Wen-Lang Lin,&nbsp;Hirotake Uchikado,&nbsp;Margery H Mark,&nbsp;Lawrence I Golbe,&nbsp;Katerina Markopoulou,&nbsp;Zbigniew K Wszolek,&nbsp;Dennis W Dickson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The clinical features of the genetically determined forms of familial Parkinson's disease (PD) have been described in multiple reports, but there have been few comparative neuropathologic studies. Five familial PD cases, with mutations in SNCA, were matched for age, sex, and Alzheimer type pathology with sporadic PD cases. Immunohistochemistry for phospho-tau and α-synuclein was performed in 8 brain regions. The frequency of tau pathology and the morphologic features of α-synuclein pathology in familial PD were compared with sporadic PD using semi-quantitative methods. In familial PD, there were significantly more tau positive extra-perikaryal spheroid-like and thread-like lesions than in the sporadic PD. There was no significant difference in the amount of α-synuclein positive neuronal perikaryal pathology between familial PD and sporadic PD, but α-synuclein positive oligodendroglial and neuritic lesions were significantly greater in familial PD compared to sporadic PD. In the substantia nigra, familial PD had more marked neuronal loss and fewer residential neurons with Lewy bodies than the sporadic PD, suggesting a close relationship between the severity of neuronal loss and Lewy body formation. The results show a diversity of pathological features of genetically determined familial PD, and they draw attention to the possible role of tau protein in neurodegeneration. Moreover, the presence of oligodendroglial inclusions at the light and electron microscopic levels in familial PD suggests that PD and multiple system atrophy form a continuum of α-synuclein pathology. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 4","pages":"266-75"},"PeriodicalIF":0.0,"publicationDate":"2013-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852566/pdf/ajnd0002-0266.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31938548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ER-stress in Alzheimer's disease: turning the scale? 阿尔茨海默病的内质网应激:扭转天平?
Kristina Endres, Sven Reinhardt
{"title":"ER-stress in Alzheimer's disease: turning the scale?","authors":"Kristina Endres,&nbsp;Sven Reinhardt","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 4","pages":"247-65"},"PeriodicalIF":0.0,"publicationDate":"2013-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852565/pdf/ajnd0002-0247.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31938551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. 神经退行性变的途径:从阿尔茨海默病、帕金森病和相关疾病的GWAS的机制见解
Vijay K Ramanan, Andrew J Saykin
{"title":"Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders.","authors":"Vijay K Ramanan,&nbsp;Andrew J Saykin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The discovery of causative genetic mutations in affected family members has historically dominated our understanding of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Nevertheless, most cases of neurodegenerative disease are not explained by Mendelian inheritance of known genetic variants, but instead are thought to have a complex etiology with numerous genetic and environmental factors contributing to susceptibility. Although unbiased genome-wide association studies (GWAS) have identified novel associations to neurodegenerative diseases, most of these hits explain only modest fractions of disease heritability. In addition, despite the substantial overlap of clinical and pathologic features among major neurodegenerative diseases, surprisingly few GWAS-implicated variants appear to exhibit cross-disease association. These realities suggest limitations of the focus on individual genetic variants and create challenges for the development of diagnostic and therapeutic strategies, which traditionally target an isolated molecule or mechanistic step. Recently, GWAS of complex diseases and traits have focused less on individual susceptibility variants and instead have emphasized the biological pathways and networks revealed by genetic associations. This new paradigm draws on the hypothesis that fundamental disease processes may be influenced on a personalized basis by a combination of variants - some common and others rare, some protective and others deleterious - in key genes and pathways. Here, we review and synthesize the major pathways implicated in neurodegeneration, focusing on GWAS from the most prevalent neurodegenerative disorders, AD and PD. Using literature mining, we also discover a novel regulatory network that is enriched with AD- and PD-associated genes and centered on the SP1 and AP-1 (Jun/Fos) transcription factors. Overall, this pathway- and network-driven model highlights several potential shared mechanisms in AD and PD that will inform future studies of these and other neurodegenerative disorders. These insights also suggest that biomarker and treatment strategies may require simultaneous targeting of multiple components, including some specific to disease stage, in order to assess and modulate neurodegeneration. Pathways and networks will provide ideal vehicles for integrating relevant findings from GWAS and other modalities to enhance clinical translation. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 3","pages":"145-75"},"PeriodicalIF":0.0,"publicationDate":"2013-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783830/pdf/ajnd0002-0145.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31781387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The time course of action of two neuroprotectants, dietary saffron and photobiomodulation, assessed in the rat retina. 在大鼠视网膜中评估两种神经保护剂--膳食藏红花和光生物调节的作用时间过程。
American journal of neurodegenerative disease Pub Date : 2013-09-18 eCollection Date: 2013-01-01
Fabiana Di Marco, Stefania Romeo, Charith Nandasena, Sivaraman Purushothuman, Charean Adams, Silvia Bisti, Jonathan Stone
{"title":"The time course of action of two neuroprotectants, dietary saffron and photobiomodulation, assessed in the rat retina.","authors":"Fabiana Di Marco, Stefania Romeo, Charith Nandasena, Sivaraman Purushothuman, Charean Adams, Silvia Bisti, Jonathan Stone","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Dietary saffron and photobiomodulation (low-level infrared radiation, PBM) are emerging as therapeutically promising protectants for neurodegenerative conditions, such as the retinal dystrophies. In animal models, saffron and PBM, given in limited daily doses, protect retina and brain from toxin- or light-induced stress. This study addresses the rate at which saffron and PBM, given in daily doses, induce neuroprotection, using a light damage model of photoreceptor degeneration in Sprague Dawley (SD) rats.</p><p><strong>Results: </strong>Rats were raised in dim cyclic (12 h 5 lux, 12 h dark) illumination, treated with saffron or PBM for 2-10 d, and then exposed to bright damaging light (1,000 lux for 24 h). After 1 week survival, the retina was assessed for photoreceptor death (using the TUNEL reaction), for surviving photoreceptor damage (thickness of the outer nuclear layer) and for the expression of a stress-related protein GFAP, using immunohistochemistry. Preconditioning the retina with saffron or PBM reduced photoreceptor death, preserved the population of surviving photoreceptors and reduced the upregulation of GFAP in Müller cells. At the daily dose of saffron used (1 mg/kg), protection was detectable at 2 d, increasing to 10 d. At the daily dose of PBM used (5 J/cm(2) at 670 nm) protection was detectable at 5 d, increasing to 7-10 d.</p><p><strong>Conclusions: </strong>The results provide time parameters for exploration of the mechanisms and durability of the protection provided by saffron and PBM.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 3","pages":"208-20"},"PeriodicalIF":0.0,"publicationDate":"2013-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783833/pdf/ajnd0002-0208.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31781386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subjects harboring presenilin familial Alzheimer's disease mutations exhibit diverse white matter biochemistry alterations. 早老素家族性阿尔茨海默病突变的受试者表现出不同的白质生物化学改变。
American journal of neurodegenerative disease Pub Date : 2013-09-18 eCollection Date: 2013-01-01
Alex E Roher, Chera L Maarouf, Michael Malek-Ahmadi, Jeffrey Wilson, Tyler A Kokjohn, Ian D Daugs, Charisse M Whiteside, Walter M Kalback, Mimi P Macias, Sandra A Jacobson, Marwan N Sabbagh, Bernardino Ghetti, Thomas G Beach
{"title":"Subjects harboring presenilin familial Alzheimer's disease mutations exhibit diverse white matter biochemistry alterations.","authors":"Alex E Roher,&nbsp;Chera L Maarouf,&nbsp;Michael Malek-Ahmadi,&nbsp;Jeffrey Wilson,&nbsp;Tyler A Kokjohn,&nbsp;Ian D Daugs,&nbsp;Charisse M Whiteside,&nbsp;Walter M Kalback,&nbsp;Mimi P Macias,&nbsp;Sandra A Jacobson,&nbsp;Marwan N Sabbagh,&nbsp;Bernardino Ghetti,&nbsp;Thomas G Beach","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alzheimer's disease (AD) dementia impacts all facets of higher order cognitive function and is characterized by the presence of distinctive pathological lesions in the gray matter (GM). The profound alterations in GM structure and function have fostered the view that AD impacts are primarily a consequence of GM damage. However, the white matter (WM) represents about 50% of the cerebrum and this area of the brain is substantially atrophied and profoundly abnormal in both sporadic AD (SAD) and familial AD (FAD). We examined the WM biochemistry by ELISA and Western blot analyses of key proteins in 10 FAD cases harboring mutations in the presenilin genes PSEN1 and PSEN2 as well as in 4 non-demented control (NDC) individuals and 4 subjects with SAD. The molecules examined were direct substrates of PSEN1 such as Notch-1 and amyloid precursor protein (APP). In addition, apolipoproteins, axonal transport molecules, cytoskeletal and structural proteins, neurotrophic factors and synaptic proteins were examined. PSEN-FAD subjects had, on average, higher amounts of WM amyloid-beta (Aβ) peptides compared to SAD, which may play a role in the devastating dysfunction of the brain. However, the PSEN-FAD mutations we examined did not produce uniform increases in the relative proportions of Aβ42 and exhibited substantial variability in total Aβ levels. These observations suggest that neurodegeneration and dementia do not depend solely on enhanced Aβ42 levels. Our data revealed additional complexities in PSEN-FAD individuals. Some direct substrates of γ-secretase, such as Notch, N-cadherin, Erb-B4 and APP, deviated substantially from the NDC group baseline for some, but not all, mutation types. Proteins that were not direct γ-secretase substrates, but play key structural and functional roles in the WM, likewise exhibited varied concentrations in the distinct PSEN mutation backgrounds. Detailing the diverse biochemical pathology spectrum of PSEN mutations may offer valuable insights into dementia progression and the design of effective therapeutic interventions for both SAD and FAD. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 3","pages":"187-207"},"PeriodicalIF":0.0,"publicationDate":"2013-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783832/pdf/ajnd0002-0187.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31781385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapies for human prion diseases. 人类朊病毒疾病的治疗。
Peter K Panegyres, Elizabeth Armari
{"title":"Therapies for human prion diseases.","authors":"Peter K Panegyres,&nbsp;Elizabeth Armari","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The pathological foundation of human prion diseases is a result of the conversion of the physiological form of prion protein (PrP(c)) to the pathological protease resistance form PrP(res). Most patients with prion disease have unknown reasons for this conversion and the subsequent development of a devastating neurodegenerative disorder. The conversion of PrP(c) to PrP(res), with resultant propagation and accumulation results in neuronal death and amyloidogenesis. However, with increasing understanding of neurodegenerative processes it appears that protein-misfolding and subsequent propagation of these rouge proteins, is a generic phenomenon shared with diseases caused by tau, α-synucleins and β-amyloid proteins. Consequently, effective anti-prion agents may have wider implications. A number of therapeutic approaches include polyanionic, polycyclic drugs such as pentosan polysulfate (PPS), which prevent the conversion of PrP(c) to PrP(res) and might also sequester and down-regulate PrP(res). Polyanionic compounds might also help to clear PrP(res). Treatments aimed at the laminin receptor, which is an important accessory molecule in the conversion of PrP(c) to PrP(res) - neuroprotection, immunotherapy, siRNA and antisense approaches have provided some experimental promise. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 3","pages":"176-86"},"PeriodicalIF":0.0,"publicationDate":"2013-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783831/pdf/ajnd0002-0176.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31781384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopaminergic innervation of the human subventricular zone: a comparison between Huntington's chorea and Parkinson's disease. 人类脑室下区的多巴胺能神经支配:亨廷顿舞蹈症与帕金森病的比较。
American journal of neurodegenerative disease Pub Date : 2013-09-18 eCollection Date: 2013-01-01
Martin Parent, C Bédard, E Pourcher
{"title":"Dopaminergic innervation of the human subventricular zone: a comparison between Huntington's chorea and Parkinson's disease.","authors":"Martin Parent, C Bédard, E Pourcher","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The subventricular zone retains its neurogenic capacity throughout life and, as such, is often considered a potential source for endogenous repair in neurodegenerative disorders. Because dopamine is believed to stimulate adult neurogenesis, we looked for possible variations in the dopaminergic innervation of the subventricular zone between cases of Huntington's chorea and Parkinson's diseases. Antibodies against tyrosine hydroxylase (TH) and proliferating cell nuclear antigen (PCNA) were used as specific markers of dopaminergic axons and cell proliferating activity, respectively. The immunohistochemical approach was applied to postmortem tissue from 2 Parkinson's disease cases, 4 Huntington's disease cases, along with age-matched controls. The immunostaining was revealed with either diaminobenzidine or fluorescent-conjugated secondary antibodies. Optical density measurements were made along the entire dorso-ventral extent of the caudate nucleus. An intense TH+ zone was detected along the ventricular border of the caudate nucleus in Huntington's disease cases, but not in patients with Parkinson's disease or age-matched controls. This thin (287±38 μm) paraventricular zone was composed of numerous small and densely packed dopamine axon varicosities and overlapped the deep layers of the subventricular zone. Its immunoreactivity was 47±8% more intense than that of adjacent striatal areas. The dopamine innervation of the subventricular zone is strikingly massive in Huntington's chorea compared to Parkinson's disease, a finding that concurs with the marked increase in neurogenesis noted in the subventricular zone of Huntington's disease patients. This finding suggests that dopamine plays a crucial role in mechanisms designed to compensate for the massive striatal neuronal losses that occur in Huntington's disease. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 3","pages":"221-7"},"PeriodicalIF":0.0,"publicationDate":"2013-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783834/pdf/ajnd0002-0221.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31781388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exploration of the potential mechanisms and translational potential of five medicinal plants for applications in Alzheimer's disease. 探索五种药用植物应用于阿尔茨海默病的潜在机制和转化潜力。
American journal of neurodegenerative disease Pub Date : 2013-06-21 Print Date: 2013-01-01
Taner Shakir, Ahmed Y Coulibaly, Patrick G Kehoe
{"title":"An exploration of the potential mechanisms and translational potential of five medicinal plants for applications in Alzheimer's disease.","authors":"Taner Shakir, Ahmed Y Coulibaly, Patrick G Kehoe","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common type of dementia, and represents a vast worldwide socio-economic burden, and in the absence of a current cure, effective therapeutic strategies are still needed. Cholinergic and cerebral blood flow deficits, excessive levels of oxidative stress, neuroinflammation and glutamate excitatory mechanisms are all believed to contribute to the development and progression of the disease. Scoparia dulcis, Catharanthus roseus, Sesamum indicum, Erythrina senegalensis and Vigna unguiculata represent five plants that have been used as traditional medicines for the treatment of AD in certain cultures. Review of the scientific literature was conducted to explore the properties of these plants that might be beneficial and explain what would be perceived by many to be largely anecdotal evidence of their benefit. All plants were found to possess varying levels of anti-oxidant capability. Scoparia dulcis was also found to potentiate nerve growth factor-like effects upon cell lines. Catharanthus roseus appears to inhibit acetylcholinesterase with relatively high potency, while Sesamum indicum demonstrated the strongest antioxidant ability. Comparisons with currently used plant derived therapeutics illustrate how these plants may be likely to have some therapeutic benefits in AD. The evidence presented also highlights how appropriate dietary supplementation with some of these plants in various cultural settings might have effects analogous or complementary to the so-called protective Mediterranean diet. However, prior to embarking on making any formal recommendations to this end, further rigorous evaluation is needed to better elucidate the breadth and potential toxicological aspects of medicinal properties harboured by these plants. This would be vital to ensuring a more informed and safe delivery of preparations of these plants if they were to be considered as a form of dietary supplementation and where appropriate, how these might interact with more formally established therapies in relation to AD. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 2","pages":"70-88"},"PeriodicalIF":0.0,"publicationDate":"2013-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703121/pdf/ajnd0002-0070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31572213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's disease biomarkers in animal models: closing the translational gap. 动物模型中的阿尔茨海默病生物标志物:缩小翻译差距。
American journal of neurodegenerative disease Pub Date : 2013-06-21 Print Date: 2013-01-01
Jonathan J Sabbagh, Jefferson W Kinney, Jeffrey L Cummings
{"title":"Alzheimer's disease biomarkers in animal models: closing the translational gap.","authors":"Jonathan J Sabbagh,&nbsp;Jefferson W Kinney,&nbsp;Jeffrey L Cummings","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The rising prevalence of Alzheimer's disease (AD) is rapidly becoming one of the largest health and economic challenges in the world. There is a growing need for the development and implementation of reliable biomarkers for AD that can be used to assist in diagnosis, inform disease progression, and monitor therapeutic efficacy. Preclinical models permit the evaluation of candidate biomarkers and assessment of pipeline agents before clinical trials are initiated and provide a translational opportunity to advance biomarker discovery. Fast and inexpensive data can be obtained from examination of peripheral markers, though they currently lack the sensitivity and consistency of imaging techniques such as MRI or PET. Plasma and cerebrospinal fluid (CSF) biomarkers in animal models can assist in development and implementation of similar approaches in clinical populations. These biomarkers may also be invaluable in decisions to advance a treatment to human testing. Longitudinal studies in AD models can determine initial presentation and progression of biomarkers that may also be used to evaluate disease-modifying efficacy of drugs. The refinement of biomarker approaches in preclinical systems will not only aid in drug development, but may facilitate diagnosis and disease monitoring in AD patients. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"2 2","pages":"108-20"},"PeriodicalIF":0.0,"publicationDate":"2013-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703123/pdf/ajnd0002-0108.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31572216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信