{"title":"Association study between the DNMT3A -448A>G polymorphism and risk of Alzheimer's disease in Caucasians of Italian origin.","authors":"Pierpaola Tannorella, Andrea Stoccoro, Gloria Tognoni, Ubaldo Bonuccelli, Lucia Migliore, Fabio Coppedè","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Increasing evidence points to an epigenetic contribution in Alzheimer's disease (AD) pathogenesis. In this regard, variants and polymorphisms of DNA methyltransferase genes (DNMTs) are being investigated for their contribution to cognitive decline and dementia, but results are still scarce or controversial. In the present study we genotyped 710 Caucasian subjects of Italian descent, including 320 late-onset AD (LOAD) patients, 70 individuals with amnestic Mild Cognitive Impairment (MCI), and 320 matched healthy controls, for the presence of a functional DNMT3A -448A>G (rs1550117) polymorphism, searching for association with disease risk. In addition, we searched for correlation between the studied polymorphism and circulating levels of folate, homocysteine (hcy) and vitamin B12, all involved in DNA methylation reactions and available from 189 LOAD patients and 186 matched controls. Both allele and genotype frequencies of rs1550117 were closely similar between MCI, LOAD and control subjects, and no association with dementia or pre-dementia conditions was observed. Plasma hcy levels were significantly higher (p = 0.04) and serum folate levels significantly lower (p = 0.01) in LOAD than in controls, but no difference in circulating folate, hcy or vitamin B12 levels was seen between carriers and non-carriers of the minor DNMT3A -448A allele. Collectively, present results confirmed previous associations of increased hcy and decreased folate with LOAD risk, but do not support an association between the DNMT3A -448A>G polymorphism and AD in our population. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"5 1","pages":"85-93"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788735/pdf/ajnd0005-0085.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34311629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinmu Zhang, Yingzi Wang, Cheng Ma, Yan Yan, Yang Yang, Xin Wang, Wolf-Dieter Rausch
{"title":"Ginsenoside Rd and ginsenoside Re offer neuroprotection in a novel model of Parkinson's disease.","authors":"Xinmu Zhang, Yingzi Wang, Cheng Ma, Yan Yan, Yang Yang, Xin Wang, Wolf-Dieter Rausch","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Ginsenosides are the main active constituents of Panax ginseng. Ginsenoside Re is one of the major ginsenosides; whereas hydrolysis products such as Rd appear to have higher biological activity though are present in smaller amounts. Ginsenosides, from their early use in folk medicine to modern studies, appear to exert beneficial actions against aging and even neurodegenerative disorders. Parkinson's disease is a progressive neurodegenerative movement disorder characterized by a profound loss of midbrain dopamine neurons in the substantia nigra pars compacta. Carbon tetrachloride (CCl4) exerts neurotoxic effects when present as an environmental pollutant. As a model compound it was used here to study the impact on primary nigrostriatal dopaminergic nerve cells and to investigate the neuroprotective potential of ginsenosides Rd and Re against this organic solvent. CCl4 (2.5 mM on day 12 in vitro for 48 h) significantly decreased the number of tyrosine hydroxylase (TH+) cells by 51% compared with untreated control cultures, reduced their neuritic lengths, and led to truncated degenerations of cell morphology. Ginsenosides Rd and Re (10 µM) strongly reduced cell loss and degeneration and significantly protected process lengths and numbers of neurites of TH+ cells. The anti-oxidative and anti-inflammatory potential of the cellular supernatant was lowered by CCl4 exposure. Inclusion of ginsenosides inhibited both oxidative stress and inflammation. Therefore the neuroprotective effects of ginsenosides at least partially depend on lowering oxidative stress and anti-inflammation. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"5 1","pages":"52-61"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788731/pdf/ajnd0005-0052.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34311622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Yan Liu, Roger Koukiekolo, Dong Ling Zhang, Brandon Smith, Dao Ly, Joy X Lei, Othman Ghribi
{"title":"Molecular events linking cholesterol to Alzheimer's disease and inclusion body myositis in a rabbit model.","authors":"Qing Yan Liu, Roger Koukiekolo, Dong Ling Zhang, Brandon Smith, Dao Ly, Joy X Lei, Othman Ghribi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by cognitive impairment and dementia, resulting from progressive synaptic dysfunction, loss and neuronal cell death. Inclusion body myositis (IBM) is a skeletal muscle degenerative disease, displaying progressive proximal and distal muscle weakness, in association with muscle fiber atrophy, degeneration and death. Studies have shown that the late onset version of AD (LOAD) and sporadic IBM (sIBM) in muscle share many pathological features, including the presence of extracellular plaques of β-amyloid peptides and intracellular tangles of hyperphosphorylated tau proteins. High blood cholesterol is suggested to be a risk factor for LOAD. Many neuropathological changes of LOAD can be reproduced by feeding rabbits a 2% enriched cholesterol diet for 12 weeks. The cholesterol fed rabbit model also simultaneously develops sIBM like pathology, which makes it an ideal model to study the molecular mechanisms common to the development of both diseases. In the present study, we determined the changes of gene expression in rabbit brain and muscle during the progression of LOAD and sIBM pathology using a custom rabbit nucleotide microarray, followed by qRT-PCR analyses. Out of 869 unique transcripts screened, 47 genes showed differential expression between the control and the cholesterol-treated group during the 12 week period and 19 changed transcripts appeared to be common to LOAD and sIBM. The most notable changes are the upregulation of the hemoglobin gene family and the downregulation of the genes required for mitochondrial oxidative phosphorylation in both brain and muscle tissues throughout the time course. The significant overlap on the changes of gene expression in the brain and muscle of rabbits fed with cholesterol-enriched diet supports the notion that LOAD and sIBM may share a common etiology. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"5 1","pages":"74-84"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788734/pdf/ajnd0005-0074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34311628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas A Ravenscroft, Cyril Pottier, Melissa E Murray, Matt Baker, Elizabeth Christopher, Denise Levitch, Patricia H Brown, Warren Barker, Ranjan Duara, Maria Greig-Custo, Ana Betancourt, Mara English, Xiaoyan Sun, Nilüfer Ertekin-Taner, Neill R Graff-Radford, Dennis W Dickson, Rosa Rademakers
{"title":"The presenilin 1 p.Gly206Ala mutation is a frequent cause of early-onset Alzheimer's disease in Hispanics in Florida.","authors":"Thomas A Ravenscroft, Cyril Pottier, Melissa E Murray, Matt Baker, Elizabeth Christopher, Denise Levitch, Patricia H Brown, Warren Barker, Ranjan Duara, Maria Greig-Custo, Ana Betancourt, Mara English, Xiaoyan Sun, Nilüfer Ertekin-Taner, Neill R Graff-Radford, Dennis W Dickson, Rosa Rademakers","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Mutations in the gene encoding the presenilin-1 protein (PSEN1) were first discovered to cause Alzheimer's disease (AD) 20 years ago. Since then more than 200 different pathogenic mutations have been reported, including a p.Gly206Ala founder mutation in the Hispanic population. Here we report mutation analysis of known AD genes in a cohort of 27 early-onset (age of onset ≤65, age of death ≤70) Hispanic patients ascertained in Florida. The PSEN1 p.Gly206Ala mutation was identified in 13 out of 27 patients (48.1%), emphasizing the importance of this specific mutation in the etiology of early-onset AD in this population. One other patient carried the known PSEN1 p.Gly378Val mutation. Genotyping of the PSEN1 p.Gly206Ala and p.Gly378Val mutations in 63 late-onset Hispanic AD patients did not identify additional mutation carriers. All p.Gly206Ala mutation carriers shared rare alleles at two microsatellite markers flanking PSEN1 supporting a common founder. This study confirms the p.Gly206Ala variant as a frequent cause of early onset AD in the Hispanic population and for the first time reports the high frequency of this mutation in Hispanics in Florida. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"5 1","pages":"94-101"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788736/pdf/ajnd0005-0094.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34457312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Repurposing psychiatric medicines to target activated microglia in anxious mild cognitive impairment and early Parkinson's disease.","authors":"Edward C Lauterbach","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Anxiety is common in the Mild Cognitive Impairment (MCI) stage of Alzheimer's disease (AD) and the pre-motor stages of Parkinson's disease (PD). A concomitant and possible cause of this anxiety is microglial activation, also considered a key promoter of neurodegeneration in MCI and early PD via inflammatory mechanisms and the generation of degenerative proinflammatory cytokines. Psychiatric disorders, prevalent in AD and PD, are often treated with psychiatric drugs (psychotropics), raising the question of whether psychotropics might therapeutically affect microglial activation, MCI, and PD. The literature of common psychotropics used in treating psychiatric disorders was reviewed for preclinical and clinical findings regarding microglial activation. Findings potentially compatible with reduced microglial activation or reduced microglial inflammogen release were evident for: antipsychotics including neuroleptics (chlorpromazine, thioridazine, loxapine) and atypicals (aripiprazole, olanzapine, quetiapine, risperidone, ziprasidone); mood stabilizers (carbamazepine, valproate, lithium); antidepressants including tricyclics (amitriptyline, clomipramine, imipramine, nortriptyline), SSRIs (citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline), venlafaxine, and bupropion; benzodiazepine anxiolytics (clonazepam, diazepam); cognitive enhancers (donepezil, galantamine, memantine); and other drugs (dextromethorphan, quinidine, amantadine). In contrast, pramipexole and methylphenidate might promote microglial activation. The most promising replicated findings of reduced microglial activation are for quetiapine, valproate, lithium, fluoxetine, donepezil, and memantine but further study is needed and translation of their microglial effects to human disease still requires investigation. In AD-relevant models, risperidone, valproate, lithium, fluoxetine, bupropion, donepezil, and memantine have therapeutic microglial effects in need of replication. Limited clinical data suggest some support for lithium and donepezil in reducing MCI progression, but other drugs have not been studied. In PD-relevant models, lamotrigine, valproate, fluoxetine, dextromethorphan, and amantadine have therapeutic microglial effects whereas methylphenidate induced microglial activation and pramipexole promoted NO release. Clinical data limited to pramipexole do not as of yet indicate faster progression of early PD while the other drugs remain to be investigated. These tantalizing psychotropic neuroprotective findings now invite replication and evidence in AD-and PD-specific models under chronic administration, followed by consideration for clinical trials in MCI and early stage PD. Psychiatric features in early disease may provide opportunities for clinical studies that also employ microglial PET biomarkers. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"5 1","pages":"29-51"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788730/pdf/ajnd0005-0029.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34311623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease.","authors":"Mak Adam Daulatzai","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"5 1","pages":"1-28"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34311627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyruvate blocks blood-brain barrier disruption, lymphocyte infiltration and immune response in excitotoxic brain injury.","authors":"Jae K Ryu, James G McLarnon","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The effects of pyruvate, the end metabolite of glycolysis, on blood-brain barrier (BBB) impairment and immune reactivity were examined in the quinolinic acid (QA)-injected rat striatum. Extensive disruption of BBB was observed at 7 d post QA-injection as demonstrated by increased immunohistochemical staining using antibody against immunoglobulin G (IgG). Animals receiving pyruvate administration (500 mg/kg) with QA-injection exhibited reduced lgG immunoreactivity (by 45%) relative to QA alone. QA intrastriatal injection also resulted in marked increases in the number of infiltrating T-lymphocytes (by 70-fold) and expression of major histocompatibility complex (MHC-class II) (by 45-fold) relative to unlesioned control. Treatment with pyruvate significantly reduced infiltration of T-cells (by 68%) and MHC class II expression (by 48%) induced by QA. These results indicate that QA injection into rat striatum leads to impairment in BBB function with pyruvate administration reducing immune response and BBB leakiness in excitotoxic injury. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"5 1","pages":"69-73"},"PeriodicalIF":0.0,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788733/pdf/ajnd0005-0069.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34311626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seth Love, Katy Chalmers, Paul Ince, Margaret Esiri, Johannes Attems, Raj Kalaria, Kurt Jellinger, Masahito Yamada, Mark McCarron, Thais Minett, Fiona Matthews, Steven Greenberg, David Mann, Patrick Gavin Kehoe
{"title":"Erratum: Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post-mortem brain tissue.","authors":"Seth Love, Katy Chalmers, Paul Ince, Margaret Esiri, Johannes Attems, Raj Kalaria, Kurt Jellinger, Masahito Yamada, Mark McCarron, Thais Minett, Fiona Matthews, Steven Greenberg, David Mann, Patrick Gavin Kehoe","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In a collaboration involving 11 groups with research interests in cerebral amyloid angiopathy (CAA), we used a two-stage process to develop and in turn validate a new consensus protocol and scoring scheme for the assessment of CAA and associated vasculopathic abnormalities in post-mortem brain tissue. Stage one used an iterative Delphi-style survey to develop the consensus protocol. The resultant scoring scheme was tested on a series of digital images and paraffin sections that were circulated blind to a number of scorers. The scoring scheme and choice of staining methods were refined by open-forum discussion. The agreed protocol scored parenchymal and meningeal CAA on a 0-3 scale, capillary CAA as present/absent and vasculopathy on 0-2 scale, in the 4 cortical lobes that were scored separately. A further assessment involving three centres was then undertaken. Neuropathologists in three centres (Bristol, Oxford and Sheffield) independently scored sections from 75 cases (25 from each centre) and high inter-rater reliability was demonstrated. Stage two used the results of the three-centre assessment to validate the protocol by investigating previously described associations between APOE genotype (previously determined), and both CAA and vasculopathy. Association of capillary CAA with or without arteriolar CAA with APOE ε4 was confirmed. However APOE ε2 was also found to be a strong risk factor for the development of CAA, not only in AD but also in elderly non-demented controls. Further validation of this protocol and scoring scheme is encouraged, to aid its wider adoption to facilitate collaborative and replication studies of CAA.[This corrects the article on p. 19 in vol. 3, PMID: 24754000.]. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"4 2","pages":"49"},"PeriodicalIF":0.0,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144180616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atrophy and lower regional perfusion of temporo-parietal brain areas are correlated with impairment in memory performances and increase of EEG upper alpha power in prodromal Alzheimer's disease.","authors":"Vito Davide Moretti","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Temporo-parietal cortex thinning is associated with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). The increase of the EEG upper/low alpha power ratio has been associated with MCI due to AD subjects and to the atrophy of temporo-parietal brain areas. Moreover, subjects with a higher alpha3/alpha2 frequency power ratio showed lower brain perfusion than in the low alpha3/alpha2 group. The two groups have significantly different hippocampal volumes and correlation with the theta frequency activity.</p><p><strong>Methods: </strong>74 adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording, and high resolution 3D magnetic resonance imaging (MRI). 27 of them underwent EEG recording and perfusion single-photon emission computed tomography (SPECT) evaluation. The alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. The difference in cortical thickness between the groups was estimated. Pearson's r was used to assess the correlation topography between cortical thinning as well as between brain perfusion and memory impairment.</p><p><strong>Results: </strong>In the higher upper/low alpha group, memory impairment was more pronounced both in the MRI group and the SPECT MCI group. Moreover, it was correlated with greater cortical atrophy and lower perfusional rate in temporo-parietal cortex.</p><p><strong>Conclusion: </strong>High EEG upper/low alpha power ratio was associated with cortical thinning lower perfusion in temporo-parietal. Moreover, atrophy and lower perfusional rate were both significantly correlated with memory impairment in MCI subjects. The increase of EEG upper/low alpha frequency power ratio could be useful for identifying individuals at risk for progression to AD dementia and may be of value in the clinical context.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"4 1","pages":"13-27"},"PeriodicalIF":0.0,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568770/pdf/ajnd0004-0013.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34021550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Omental transplantation for neuroendocrinological disorders.","authors":"Hernando Rafael","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Neurosurgical evidences show that the aging process is initiated between 25 to 30 years of age, in the arcuate nucleus of the hypothalamus. Likewise, experimental and neurosurgical findings indicate that the progressive ischemia in the arcuate nucleus and adjacent nuclei are responsibles at the onset of obesity and, type 2 diabetes mellitus in adults, and essential arterial hypertension (EAH). On the contrary, an omental transplantation on the optic chiasma, carotid bifurcation and anterior perforated space can provoke rejuvenation, gradual loss of body weight, decrease or normalization of hyperglycemia and normalization of EAH; all of them, due to revascularization of the hypothalamic nuclei. Besides, our surgical method have best advantages than the bariatric surgery, against obesity and type 2 diabetes mellitus. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"4 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568769/pdf/ajnd0004-0001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34021549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}