Advances in biological regulation最新文献

筛选
英文 中文
Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies 诱导多能干细胞技术在髓系恶性肿瘤研究中的应用进展。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2023.100993
Dharamveer Tatwavedi, Andrea Pellagatti, Jacqueline Boultwood
{"title":"Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies","authors":"Dharamveer Tatwavedi,&nbsp;Andrea Pellagatti,&nbsp;Jacqueline Boultwood","doi":"10.1016/j.jbior.2023.100993","DOIUrl":"10.1016/j.jbior.2023.100993","url":null,"abstract":"<div><p>Acquired myeloid malignancies are a spectrum of clonal disorders known to be caused by sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells, leading to their aberrant self-renewal and differentiation. The increasing use of induced pluripotent stem cell (iPSC) technology to study myeloid malignancies has helped usher a paradigm shift in approaches to disease modeling and drug discovery, especially when combined with gene-editing technology. The process of reprogramming allows for the capture of the diversity of genetic lesions and mutational burden found in primary patient samples into individual stable iPSC lines. Patient-derived iPSC lines, owing to their self-renewal and differentiation capacity, can thus be a homogenous source of disease relevant material that allow for the study of disease pathogenesis using various functional read-outs. Furthermore, genome editing technologies like CRISPR/Cas9 enable the study of the stepwise progression from normal to malignant hematopoiesis through the introduction of specific driver mutations, individually or in combination, to create isogenic lines for comparison. In this review, we survey the current use of iPSCs to model acquired myeloid malignancies including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), acute myeloid leukemia and MDS/MPN overlap syndromes. The use of iPSCs has enabled the interrogation of the underlying mechanism of initiation and progression driving these diseases. It has also made drug testing, repurposing, and the discovery of novel therapies for these diseases possible in a high throughput setting.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 100993"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492623000398/pdfft?md5=d8e09f7c3b671a2a8097f2350e2b7a5f&pid=1-s2.0-S2212492623000398-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ablation of diacylglycerol kinase ε promotes whitening of brown adipose tissue under high fat diet feeding 二酰基甘油激酶ε的消蚀促进高脂日粮喂养下棕色脂肪组织的增白。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2023.100994
Tomoyuki Nakano, Ayako Suzuki, Kaoru Goto
{"title":"Ablation of diacylglycerol kinase ε promotes whitening of brown adipose tissue under high fat diet feeding","authors":"Tomoyuki Nakano,&nbsp;Ayako Suzuki,&nbsp;Kaoru Goto","doi":"10.1016/j.jbior.2023.100994","DOIUrl":"10.1016/j.jbior.2023.100994","url":null,"abstract":"<div><p>Adipose tissue (AT) comprises distinct fat depots such as white AT and brown AT. White and brown adipocytes exhibit different morphological and physiological properties. White adipocytes containing large single lipid droplet (LD) provide energy on demand whereas brown adipocytes loaded with multilocular LDs consume energy to generate heat or dissipate excess energy. Recent studies have shown that multilocular brown-like cells emerge in white AT under certain conditions. These cells termed beige adipocytes participate in energy expenditure and heat generation. In the process of lipolysis, TG is broken down into free fatty acid and diacylglycerol (DG). In this regard, DG also serves as a signaling molecule activating some proteins such as protein kinase C. Therefore, DG kinase (DGK), an enzyme which phosphorylates DG into phosphatidic acid (PA), plays a pivotal role in integrating energy homeostasis and intracellular signaling. Recently, we described that DGKε-KO mice exhibit increased adiposity in visceral white AT accompanied with impaired glucose tolerance early (40 days) in the course of high fat diet (HFD) feeding, although these mice exhibit “browning or beiging” in visceral white AT associated with improved glucose tolerance after longer term HFD feeding (180 days). This study was conducted to understand the overall features of adipose tissues and investigate changes in subcutaneous (inguinal) white AT and interscapular brown AT of DGKε-KO mice during the course of HFD feeding. Results demonstrated that fat accumulation is promoted in all fat depots under 40 days of HFD feeding conditions. Remarkably, “whitening” of brown adipocytes was identified in DGKε-deficient brown AT during the course of HFD feeding, suggesting brown adipocyte dysfunction. In addition, insulin levels were considerably elevated in DGKε-KO mice under 180 days of HFD feeding conditions. Collectively, these findings suggest that brown adipocytes are dysfunctional in DGKε-KO mice, which promotes browning or beiging in visceral white AT. Beige adipocytes may take over energy disposal and contribute to improving glucose tolerance with the aid of high levels of insulin in DGKε-KO mice upon excess feeding.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 100994"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50156285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diacylglycerol kinases: A look into the future of immunotherapy 二酰甘油激酶:免疫疗法的未来展望。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2023.100999
Miguel Martin-Salgado, Ane Ochoa-Echeverría, Isabel Mérida
{"title":"Diacylglycerol kinases: A look into the future of immunotherapy","authors":"Miguel Martin-Salgado,&nbsp;Ane Ochoa-Echeverría,&nbsp;Isabel Mérida","doi":"10.1016/j.jbior.2023.100999","DOIUrl":"10.1016/j.jbior.2023.100999","url":null,"abstract":"<div><p>Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 100999"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492623000453/pdfft?md5=f6694ed8725f58691594eb04dca8f19b&pid=1-s2.0-S2212492623000453-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72207995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key to photograph of participants 与会者照片的关键信息。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2024.101020
{"title":"Key to photograph of participants","authors":"","doi":"10.1016/j.jbior.2024.101020","DOIUrl":"10.1016/j.jbior.2024.101020","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 101020"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492624000083/pdfft?md5=32aa151b49ce814c4560a89042d624ec&pid=1-s2.0-S2212492624000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Notch-3 affects chemoresistance in colorectal cancer via DNA base excision repair enzymes Notch-3 通过 DNA 碱基切除修复酶影响结直肠癌的化疗耐药性
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2024.101013
Dennis C. George , Fred E. Bertrand , George Sigounas
{"title":"Notch-3 affects chemoresistance in colorectal cancer via DNA base excision repair enzymes","authors":"Dennis C. George ,&nbsp;Fred E. Bertrand ,&nbsp;George Sigounas","doi":"10.1016/j.jbior.2024.101013","DOIUrl":"10.1016/j.jbior.2024.101013","url":null,"abstract":"<div><p>Colon cancer is the second leading cause of cancer death. With over 153,000 new CRC cases predicted, it is the third most commonly diagnosed cancer. Early detection can lead to curative surgical intervention, but recurrent and late metastatic disease is frequently treated with chemotherapeutic options based on induction of DNA damage. Understanding mechanism(s) that regulate DNA damage repair within colon tumor cells is essential to developing effective therapeutic strategies. The Notch signaling pathway<span> is known to participate in normal colon development and we have recently described a pathway by which Notch-1, Notch-3 and Smad may regulated EMT<span><span><span> and stem-like properties in colon tumor cells, promoting tumorigenesis. Little is known about how Notch may regulate drug resistance. In this study, we used shRNA<span> to generate colon tumor cells with loss of Notch-3 expression. These cells exhibited reduced expression of the base-excision repair proteins PARP1 and </span></span>APE1, along with increased sensitivity to ara-c and </span>cisplatin. These data point to a pathway in which Notch-3 signaling can regulate DNA repair within colon tumor cells and suggests that targeting Notch-3 may be an effective approach to rendering colon tumors sensitive to chemotherapeutic drugs.</span></span></p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 101013"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139537329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yusuf hannun photo 优素福-哈农照片。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2024.101021
Lucio Ildebrando cocco
{"title":"Yusuf hannun photo","authors":"Lucio Ildebrando cocco","doi":"10.1016/j.jbior.2024.101021","DOIUrl":"10.1016/j.jbior.2024.101021","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 101021"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492624000095/pdfft?md5=4302333f928c687ad32edae663a9a29b&pid=1-s2.0-S2212492624000095-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139566357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The wide world of non-mammalian phospholipase D enzymes 非哺乳动物磷脂酶 D 的广阔天地
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2023.101000
Y. Wang , M.J.O. Wakelam , V.A. Bankaitis , M.I. McDermott
{"title":"The wide world of non-mammalian phospholipase D enzymes","authors":"Y. Wang ,&nbsp;M.J.O. Wakelam ,&nbsp;V.A. Bankaitis ,&nbsp;M.I. McDermott","doi":"10.1016/j.jbior.2023.101000","DOIUrl":"10.1016/j.jbior.2023.101000","url":null,"abstract":"<div><p>Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 101000"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138620442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sixty-fourth international symposium on biological regulation and enzyme activity in normal and neoplastic tissues 第六十四届正常组织和肿瘤组织中的生物调节和酶活性国际研讨会:与会者名单。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2024.101017
{"title":"Sixty-fourth international symposium on biological regulation and enzyme activity in normal and neoplastic tissues","authors":"","doi":"10.1016/j.jbior.2024.101017","DOIUrl":"10.1016/j.jbior.2024.101017","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 101017"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492624000058/pdfft?md5=c4ff8cf58a997a4bdc75268d6cd3c270&pid=1-s2.0-S2212492624000058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role and regulation of phospholipase D in metabolic disorders 磷脂酶D在代谢紊乱中的作用和调节。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2023.100988
Seon Hyang Park , Ji Hyeon Kang , Yoe-Sik Bae
{"title":"The role and regulation of phospholipase D in metabolic disorders","authors":"Seon Hyang Park ,&nbsp;Ji Hyeon Kang ,&nbsp;Yoe-Sik Bae","doi":"10.1016/j.jbior.2023.100988","DOIUrl":"10.1016/j.jbior.2023.100988","url":null,"abstract":"<div><p>Phospholipase D (PLD) is an enzyme that catalyzes the hydrolysis of phosphatidylcholine into phosphatidic acid and free choline. In mammals, PLD exists in two well-characterized isoforms, PLD1 and PLD2, and it plays pivotal roles as signaling mediators in various cellular functions, such as cell survival, differentiation, and migration. These isoforms are predominantly expressed in diverse cell types, including many immune cells, such as monocytes and macrophages, as well as non-immune cells, such as epithelial and endothelial cells. Several previous studies have revealed that the stimulation of these cells leads to an increase in PLD expression and its enzymatic products, potentially influencing the pathological responses in a wide spectrum of diseases. Metabolic diseases, exemplified by conditions, such as diabetes, obesity, hypertension, and atherosclerosis, pose significant global health challenges. Abnormal activation or dysfunction of PLD emerges as a potential contributing factor to the pathogenesis and progression of these metabolic disorders. Therefore, it is crucial to thoroughly investigate and understand the intricate relationship between PLD and metabolic diseases. In this review, we provide an in-depth overview of the functional roles and molecular mechanisms of PLD involved in metabolic diseases. By delving into the intricate interplay between PLD and metabolic disorders, this review aims to offer insights into the potential therapeutic interventions.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 100988"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flimsy overlay 薄薄的覆盖层。
Advances in biological regulation Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2024.101019
Lucio Ildebrando cocco
{"title":"Flimsy overlay","authors":"Lucio Ildebrando cocco","doi":"10.1016/j.jbior.2024.101019","DOIUrl":"10.1016/j.jbior.2024.101019","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 101019"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492624000071/pdfft?md5=4eb588ae2be05b36d65071eb8f2f3c19&pid=1-s2.0-S2212492624000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信