{"title":"Stress evolution in thermal barrier coatings for rocket engine applications","authors":"Martin Bäker, Torben Fiedler, Joachim Rösler","doi":"10.1186/s40759-015-0005-2","DOIUrl":"https://doi.org/10.1186/s40759-015-0005-2","url":null,"abstract":"<p>Thermal barrier coatings are a promising concept to improve the lifetime of the copper liner of a rocket engine. Due to the high heat fluxes and the large thermal conductivity of copper, coatings have to be designed especially for this application.</p><p>In this paper, we perform fully thermo-mechanically coupled finite element analyses of a small section of a combustion chamber with a coating system comprising a NiCuCrAl bond coat and a NiCrAlY top coat.</p><p>Heat fluxes are calculated to determine reasonable coating thickness values. Elastic and plastic deformation in the materials is considered to study the stress evolution. A crack model serves to estimate the possibility of vertical cracks propagating through the coating system.</p><p>Several design guidelines are developed from these results that will aid future development of thermal barrier coatings.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"1 1","pages":""},"PeriodicalIF":4.03,"publicationDate":"2015-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-015-0005-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4228626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B Emek Abali, Wolfgang H Müller, Victor A Eremeyev
{"title":"Strain gradient elasticity with geometric nonlinearities and its computational evaluation","authors":"B Emek Abali, Wolfgang H Müller, Victor A Eremeyev","doi":"10.1186/s40759-015-0004-3","DOIUrl":"https://doi.org/10.1186/s40759-015-0004-3","url":null,"abstract":"<p>The theory of linear elasticity is insufficient at small length scales, e.g., when dealing with micro-devices. In particular, it cannot predict the “size effect” observed at the micro- and nanometer scales. In order to design at such small scales an improvement of the theory of elasticity is necessary, which is referred to as <i>strain gradient elasticity</i>.</p><p>There are various approaches in literature, especially for small deformations. In order to include <i>geometric nonlinearities</i> we start by discussing the necessary balance equations. Then we present a generic approach for obtaining adequate constitutive equations. By combining balance equations and constitutive relations nonlinear field equations result. We apply a variational formulation to the nonlinear field equations in order to find a <i>weak</i> form, which can be solved numerically by using open-source codes.</p><p>By using balances of linear and angular momentum we obtain the so-called stress and couple stress as tensors of rank two and three, respectively. Since dealing with tensors an adequate representation theorem can be applied. We propose for an isotropic material a stress with two and a couple stress with three material parameters. For understanding their impact during deformation the numerical solution procedure is performed. By successfully simulating the size effect known from experiments, we verify the proposed theory and its numerical implementation.</p><p>Based on representation theorems a self consistent strain gradient theory is presented, discussed, and implemented into a <i>computational reality</i>.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"1 1","pages":""},"PeriodicalIF":4.03,"publicationDate":"2015-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-015-0004-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4340170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment","authors":"A Schiavone, L G Zhao","doi":"10.1186/s40759-014-0002-x","DOIUrl":"https://doi.org/10.1186/s40759-014-0002-x","url":null,"abstract":"<p>Finite element is an effective tool to simulate stent expansion inside stenotic arteries, which provides an insightful understanding of the biomechanical behaviour of the whole stent-artery system during the procedure. The choice of balloon type, system constraint and artery constitutive model plays an important role in finite element simulation of stent deployment.</p><p>Commercial finite element package ABAQUS was used to model the expansion of Xience stent inside a diseased artery with 40% stenosis. The arterial wall, consisting of intima, media and adventitia layers, and the stenotic plaque were described by different hyperelastic models. Both folded and rubber balloons were considered and inflated with a linearly increasing pressure of 1.4 MPa. Simulations were also carried out by considering free, partially and fully constrained arteries.</p><p>Folded balloon produces sustained stent expansion under a lower pressure when compared to rubber balloon, leading to increased stress level and enhanced final expansion for the system. Fully constrained artery reduces the stent expansion when compared to free and partially constrained arteries, due to the increased recoiling effect. Stress in the artery-plaque system has higher magnitude for stent expansion in a free artery due to more severe stretch. Calcified plaque limits stent expansion considerably when compared to hypocellular plaque. The negligence of the second stretch invariant in the strain energy potential leads to the disappearance of saturation behaviour during stent expansion. The use of anisotropic artery model reduces the system expansion at peak pressure when compared to the isotropic model, but with an increased final diameter due to reduced recoiling effect. The stress distribution in the artery-plaque system is also different for different combinations of artery and plaque constitutive models.</p><p>Folded balloon should be used in the simulation of stent deployment, with the artery partially constrained using spring elements with a proper stiffness constant. The blood vessel should be modelled as a three-layer structure using a hyperelastic potential that considers both the first and second stretch invariants as well as the anisotropy. The composition of the plaque also has to be considered due to its major effect on stent deployment.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"1 1","pages":""},"PeriodicalIF":4.03,"publicationDate":"2015-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-014-0002-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4220211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farukh Farukh, Liguo Zhao, Rong Jiang, Philippa Reed, Daniela Proprentner, Barbara Shollock
{"title":"Fatigue crack growth in a nickel-based superalloy at elevated temperature - experimental studies, viscoplasticity modelling and XFEM predictions","authors":"Farukh Farukh, Liguo Zhao, Rong Jiang, Philippa Reed, Daniela Proprentner, Barbara Shollock","doi":"10.1186/s40759-015-0003-4","DOIUrl":"https://doi.org/10.1186/s40759-015-0003-4","url":null,"abstract":"<p>Nickel-based superalloys are typically used as blades and discs in the hot section of gas turbine engines, which are subjected to cyclic loading at high temperature during service. Understanding fatigue crack deformation and growth in these alloys at high temperature is crucial for ensuring structural integrity of gas turbines.</p><p>Experimental studies of crack growth were carried out for a three-point bending specimen subjected to fatigue at 725°C. In order to remove the influence of oxidation which can be considerable at elevated temperature, crack growth was particularly tested in a vacuum environment with a focus on dwell effects. For simulation, the material behaviour was described by a cyclic viscoplastic model with nonlinear kinematic and isotropic hardening rules, calibrated against test data. In combination with the extended finite element method (XFEM), the viscoplasticity model was further applied to predict crack growth under dwell fatigue. The crack was assumed to grow when the accumulated plastic strain ahead of the crack tip reached a critical value which was back calculated from crack growth test data in vacuum.</p><p>Computational analyses of a stationary crack showed the progressive accumulation of strain near the crack tip under fatigue, which justified the strain accumulation criterion used in XFEM prediction of fatigue crack growth. During simulation, the crack length was recorded against the number of loading cycles, and the results were in good agreement with the experimental data. It was also shown, both experimentally and numerically, that an increase of dwell period leads to an increase of crack growth rate due to the increased creep deformation near the crack tip, but this effect is marginal when compared to the dwell effects under fatigue-oxidation conditions.</p><p>The strain accumulation criterion was successful in predicting both the path and the rate of crack growth under dwell fatigue. This work proved the capability of XFEM, in conjunction with advanced cyclic viscoplasticity model, for predicting crack growth in nickel alloys at elevated temperature, which has significant implication to gas turbine industries in terms of “damage tolerance” assessment of critical turbine discs and blades.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"1 1","pages":""},"PeriodicalIF":4.03,"publicationDate":"2015-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-015-0003-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4220210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth L Reifsnider, Dan G Cacuci, Jeffrey Baker, Jon Michael Adkins, Fazle Rabbi
{"title":"Validated predictive computational methods for surface charge in heterogeneous functional materials: HeteroFoaM™","authors":"Kenneth L Reifsnider, Dan G Cacuci, Jeffrey Baker, Jon Michael Adkins, Fazle Rabbi","doi":"10.1186/s40759-014-0001-y","DOIUrl":"https://doi.org/10.1186/s40759-014-0001-y","url":null,"abstract":"<p>Essentially all heterogeneous materials are dielectric, i.e., they are imperfect conductors that generally display internal charge displacements that create dissipation and local charge accumulation at interfaces. Over the last few years, the authors have focused on the development of an understanding of such behaviour in heterogeneous functional materials for energy conversion and storage, called HeteroFoaM (www.HeteroFoaM.com). Using paradigm problems, this work will indicate major directions for developing generally applicable methods for the multiphysics, multi-scale design of heterogeneous functional materials.</p><p>The present paper outlines the foundation for developing validated predictive computational methods that can be used in the design of multi-phase heterogeneous functional materials, or HeteroFoaM, as a genre of materials. Such methods will be capable of designing not only the constituent materials and their interactions, but also the morphology of the shape, size, surfaces and interfaces that define the heterogeneity and the resulting functional response of the material system.</p><p>Relationships to applications which drive this development are identified. A paradigm problem based on dielectric response is formulated and discussed in context.</p><p>We report an approach that defines a methodology for designing not only the constituent material properties and their interactions in a heterogeneous dielectric material system, but also the morphology of the shape, size, surface, and interfaces that defines the heterogeneity and the resulting functional response of that system.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"1 1","pages":""},"PeriodicalIF":4.03,"publicationDate":"2015-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-014-0001-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4222040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}