ACM Transactions on Information Systems (TOIS)最新文献

筛选
英文 中文
Exploiting Positional Information for Session-Based Recommendation 利用位置信息进行基于会话的推荐
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-07-02 DOI: 10.1145/3473339
Ruihong Qiu, Zi Huang, Tong Chen, Hongzhi Yin
{"title":"Exploiting Positional Information for Session-Based Recommendation","authors":"Ruihong Qiu, Zi Huang, Tong Chen, Hongzhi Yin","doi":"10.1145/3473339","DOIUrl":"https://doi.org/10.1145/3473339","url":null,"abstract":"For present e-commerce platforms, it is important to accurately predict users’ preference for a timely next-item recommendation. To achieve this goal, session-based recommender systems are developed, which are based on a sequence of the most recent user-item interactions to avoid the influence raised from outdated historical records. Although a session can usually reflect a user’s current preference, a local shift of the user’s intention within the session may still exist. Specifically, the interactions that take place in the early positions within a session generally indicate the user’s initial intention, while later interactions are more likely to represent the latest intention. Such positional information has been rarely considered in existing methods, which restricts their ability to capture the significance of interactions at different positions. To thoroughly exploit the positional information within a session, a theoretical framework is developed in this paper to provide an in-depth analysis of the positional information. We formally define the properties of forward-awareness and backward-awareness to evaluate the ability of positional encoding schemes in capturing the initial and the latest intention. According to our analysis, existing positional encoding schemes are generally forward-aware only, which can hardly represent the dynamics of the intention in a session. To enhance the positional encoding scheme for the session-based recommendation, a dual positional encoding (DPE) is proposed to account for both forward-awareness and backward-awareness. Based on DPE, we propose a novel Positional Recommender (PosRec) model with a well-designed Position-aware Gated Graph Neural Network module to fully exploit the positional information for session-based recommendation tasks. Extensive experiments are conducted on two e-commerce benchmark datasets, Yoochoose and Diginetica and the experimental results show the superiority of the PosRec by comparing it with the state-of-the-art session-based recommender models.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"1 1","pages":"1 - 24"},"PeriodicalIF":0.0,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90242387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
What and How long: Prediction of Mobile App Engagement 预测手机应用用户粘性
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-06-02 DOI: 10.1145/3464301
Yuan Tian, Keren Zhou, D. Pelleg
{"title":"What and How long: Prediction of Mobile App Engagement","authors":"Yuan Tian, Keren Zhou, D. Pelleg","doi":"10.1145/3464301","DOIUrl":"https://doi.org/10.1145/3464301","url":null,"abstract":"User engagement is crucial to the long-term success of a mobile app. Several metrics, such as dwell time, have been used for measuring user engagement. However, how to effectively predict user engagement in the context of mobile apps is still an open research question. For example, do the mobile usage contexts (e.g., time of day) in which users access mobile apps impact their dwell time? Answers to such questions could help mobile operating system and publishers to optimize advertising and service placement. In this article, we first conduct an empirical study for assessing how user characteristics, temporal features, and the short/long-term contexts contribute to gains in predicting users’ app dwell time on the population level. The comprehensive analysis is conducted on large app usage logs collected through a mobile advertising company. The dataset covers more than 12K anonymous users and 1.3 million log events. Based on the analysis, we further investigate a novel mobile app engagement prediction problem—can we predict simultaneously what app the user will use next and how long he/she will stay on that app? We propose several strategies for this joint prediction problem and demonstrate that our model can improve the performance significantly when compared with the state-of-the-art baselines. Our work can help mobile system developers in designing a better and more engagement-aware mobile app user experience.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"21 1","pages":"1 - 38"},"PeriodicalIF":0.0,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83280048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Popularity Bias in False-positive Metrics for Recommender Systems Evaluation 推荐系统评价中假阳性指标中的人气偏差
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-22 DOI: 10.1145/3452740
Elisa Mena-Maldonado, Rocío Cañamares, P. Castells, Yongli Ren, M. Sanderson
{"title":"Popularity Bias in False-positive Metrics for Recommender Systems Evaluation","authors":"Elisa Mena-Maldonado, Rocío Cañamares, P. Castells, Yongli Ren, M. Sanderson","doi":"10.1145/3452740","DOIUrl":"https://doi.org/10.1145/3452740","url":null,"abstract":"We investigate the impact of popularity bias in false-positive metrics in the offline evaluation of recommender systems. Unlike their true-positive complements, false-positive metrics reward systems that minimize recommendations disliked by users. Our analysis is, to the best of our knowledge, the first to show that false-positive metrics tend to penalise popular items, the opposite behavior of true-positive metrics—causing a disagreement trend between both types of metrics in the presence of popularity biases. We present a theoretical analysis of the metrics that identifies the reason that the metrics disagree and determines rare situations where the metrics might agree—the key to the situation lies in the relationship between popularity and relevance distributions, in terms of their agreement and steepness—two fundamental concepts we formalize. We then examine three well-known datasets using multiple popular true- and false-positive metrics on 16 recommendation algorithms. Specific datasets are chosen to allow us to estimate both biased and unbiased metric values. The results of the empirical study confirm and illustrate our analytical findings. With the conditions of the disagreement of the two types of metrics established, we then determine under which circumstances true-positive or false-positive metrics should be used by researchers of offline evaluation in recommender systems.1","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"6 1","pages":"1 - 43"},"PeriodicalIF":0.0,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86645591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Inductive Contextual Relation Learning for Personalization 个性化的归纳语境关系学习
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-22 DOI: 10.1145/3450353
Chuxu Zhang, Huaxiu Yao, Lu Yu, Chao Huang, Dongjin Song, Haifeng Chen, Meng Jiang, N. Chawla
{"title":"Inductive Contextual Relation Learning for Personalization","authors":"Chuxu Zhang, Huaxiu Yao, Lu Yu, Chao Huang, Dongjin Song, Haifeng Chen, Meng Jiang, N. Chawla","doi":"10.1145/3450353","DOIUrl":"https://doi.org/10.1145/3450353","url":null,"abstract":"Web personalization, e.g., recommendation or relevance search, tailoring a service/product to accommodate specific online users, is becoming increasingly important. Inductive personalization aims to infer the relations between existing entities and unseen new ones, e.g., searching relevant authors for new papers or recommending new items to users. This problem, however, is challenging since most of recent studies focus on transductive problem for existing entities. In addition, despite some inductive learning approaches have been introduced recently, their performance is sub-optimal due to relatively simple and inflexible architectures for aggregating entity’s content. To this end, we propose the inductive contextual personalization (ICP) framework through contextual relation learning. Specifically, we first formulate the pairwise relations between entities with a ranking optimization scheme that employs neural aggregator to fuse entity’s heterogeneous contents. Next, we introduce a node embedding term to capture entity’s contextual relations, as a smoothness constraint over the prior ranking objective. Finally, the gradient descent procedure with adaptive negative sampling is employed to learn the model parameters. The learned model is capable of inferring the relations between existing entities and inductive ones. Thorough experiments demonstrate that ICP outperforms numerous baseline methods for two different applications, i.e., relevant author search and new item recommendation.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"24 1","pages":"1 - 22"},"PeriodicalIF":0.0,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78714374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Exploiting Real-time Search Engine Queries for Earthquake Detection: A Summary of Results 利用实时搜索引擎查询地震探测:结果摘要
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-22 DOI: 10.1145/3453842
Qi Zhang, Hengshu Zhu, Qi Liu, Enhong Chen, Hui Xiong
{"title":"Exploiting Real-time Search Engine Queries for Earthquake Detection: A Summary of Results","authors":"Qi Zhang, Hengshu Zhu, Qi Liu, Enhong Chen, Hui Xiong","doi":"10.1145/3453842","DOIUrl":"https://doi.org/10.1145/3453842","url":null,"abstract":"Online search engine has been widely regarded as the most convenient approach for information acquisition. Indeed, the intensive information-seeking behaviors of search engine users make it possible to exploit search engine queries as effective “crowd sensors” for event monitoring. While some researchers have investigated the feasibility of using search engine queries for coarse-grained event analysis, the capability of search engine queries for real-time event detection has been largely neglected. To this end, in this article, we introduce a large-scale and systematic study on exploiting real-time search engine queries for outbreak event detection, with a focus on earthquake rapid reporting. In particular, we propose a realistic system of real-time earthquake detection through monitoring millions of queries related to earthquakes from a dominant online search engine in China. Specifically, we first investigate a large set of queries for selecting the representative queries that are highly correlated with the outbreak of earthquakes. Then, based on the real-time streams of selected queries, we design a novel machine learning–enhanced two-stage burst detection approach for detecting earthquake events. Meanwhile, the location of an earthquake epicenter can be accurately estimated based on the spatial-temporal distribution of search engine queries. Finally, through the extensive comparison with earthquake catalogs from China Earthquake Networks Center, 2015, the detection precision of our system can achieve 87.9%, and the accuracy of location estimation (province level) is 95.7%. In particular, 50% of successfully detected results can be found within 62 s after earthquake, and 50% of successful locations can be found within 25.5 km of seismic epicenter. Our system also found more than 23.3% extra earthquakes that were felt by people but not publicly released, 12.1% earthquake-like special outbreaks, and meanwhile, revealed many interesting findings, such as the typical query patterns of earthquake rumor and regular memorial events. Based on these results, our system can timely feed back information to the search engine users according to various cases and accelerate the information release of felt earthquakes.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"31 1","pages":"1 - 32"},"PeriodicalIF":0.0,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75577573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Modeling Multiple Coexisting Category-Level Intentions for Next Item Recommendation 为下一个项目推荐建立多个共存的类别级意向模型
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-06 DOI: 10.1145/3441642
Yanan Xu, Yanmin Zhu, Jiadi Yu
{"title":"Modeling Multiple Coexisting Category-Level Intentions for Next Item Recommendation","authors":"Yanan Xu, Yanmin Zhu, Jiadi Yu","doi":"10.1145/3441642","DOIUrl":"https://doi.org/10.1145/3441642","url":null,"abstract":"Purchase intentions have a great impact on future purchases and thus can be exploited for making recommendations. However, purchase intentions are typically complex and may change from time to time. Through empirical study with two e-commerce datasets, we observe that behaviors of multiple types can indicate user intentions and a user may have multiple coexisting category-level intentions that evolve over time. In this article, we propose a novel Intention-Aware Recommender System (IARS) which consists of four components for mining such complex intentions from user behaviors of multiple types. In the first component, we utilize several Recurrent Neural Networks (RNNs) and an attention layer to model diverse user intentions simultaneously and design two kinds of Multi-behavior GRU (MGRU) cells to deal with heterogeneous behaviors. To reveal user intentions, we carefully design three tasks that share representations from MGRUs. The next-item recommendation is the main task and leverages attention to select user intentions according to candidate items. The remaining two (item prediction and sequence comparison) are auxiliary tasks and can reveal user intentions. Extensive experiments on the two real-world datasets demonstrate the effectiveness of our models compared with several state-of-the-art recommendation methods in terms of hit ratio and NDCG.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"37 1","pages":"1 - 24"},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81650560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
HGAT: Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification 半监督短文本分类的异构图注意网络
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-06 DOI: 10.1145/3450352
Tianchi Yang, Linmei Hu, C. Shi, Houye Ji, Xiaoli Li, Liqiang Nie
{"title":"HGAT: Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification","authors":"Tianchi Yang, Linmei Hu, C. Shi, Houye Ji, Xiaoli Li, Liqiang Nie","doi":"10.1145/3450352","DOIUrl":"https://doi.org/10.1145/3450352","url":null,"abstract":"Short text classification has been widely explored in news tagging to provide more efficient search strategies and more effective search results for information retrieval. However, most existing studies, concentrating on long text classification, deliver unsatisfactory performance on short texts due to the sparsity issue and the insufficiency of labeled data. In this article, we propose a novel heterogeneous graph neural network-based method for semi-supervised short text classification, leveraging full advantage of limited labeled data and large unlabeled data through information propagation along the graph. Specifically, we first present a flexible heterogeneous information network (HIN) framework for modeling short texts, which can integrate any type of additional information and meanwhile capture their relations to address the semantic sparsity. Then, we propose Heterogeneous Graph Attention networks (HGAT) to embed the HIN for short text classification based on a dual-level attention mechanism, including node-level and type-level attentions. To efficiently classify new coming texts that do not previously exist in the HIN, we extend our model HGAT for inductive learning, avoiding re-training the model on the evolving HIN. Extensive experiments on single-/multi-label classification demonstrates that our proposed model HGAT significantly outperforms state-of-the-art methods across the benchmark datasets under both transductive and inductive learning.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"1 1","pages":"1 - 29"},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78570339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 65
RLPS: A Reinforcement Learning–Based Framework for Personalized Search RLPS:基于强化学习的个性化搜索框架
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-06 DOI: 10.1145/3446617
Jing Yao, Zhicheng Dou, Jun Xu, Jirong Wen
{"title":"RLPS: A Reinforcement Learning–Based Framework for Personalized Search","authors":"Jing Yao, Zhicheng Dou, Jun Xu, Jirong Wen","doi":"10.1145/3446617","DOIUrl":"https://doi.org/10.1145/3446617","url":null,"abstract":"Personalized search is a promising way to improve search qualities by taking user interests into consideration. Recently, machine learning and deep learning techniques have been successfully applied to search result personalization. Most existing models simply regard the personal search history as a static set of user behaviors and learn fixed ranking strategies based on all the recorded data. Though improvements have been achieved, the essence that the search process is a sequence of interactions between the search engine and user is ignored. The user’s interests may dynamically change during the search process, therefore, it would be more helpful if a personalized search model could track the whole interaction process and adjust its ranking strategy continuously. In this article, we adapt reinforcement learning to personalized search and propose a framework, referred to as RLPS. It utilizes a Markov Decision Process (MDP) to track sequential interactions between the user and search engine, and continuously update the underlying personalized ranking model with the user’s real-time feedback to learn the user’s dynamic interests. Within this framework, we implement two models: the listwise RLPS-L and the hierarchical RLPS-H. RLPS-L interacts with users and trains the ranking model with document lists, while RLPS-H improves model training by designing a layered structure and introducing document pairs. In addition, we also design a feedback-aware personalized ranking component to capture the user’s feedback, which impacts the user interest profile for the next query. Significant improvements over existing personalized search models are observed in the experiments on the public AOL search log and a commercial log.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"24 1","pages":"1 - 29"},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76764037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Hybrid Framework for Session Context Modeling 会话上下文建模的混合框架
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-06 DOI: 10.1145/3448127
Chenjia, Jiaxin Mao, LiuYiqun, YeZiyi, MaWeizhi, wangchao, Zhangmin, MaShaoping
{"title":"A Hybrid Framework for Session Context Modeling","authors":"Chenjia, Jiaxin Mao, LiuYiqun, YeZiyi, MaWeizhi, wangchao, Zhangmin, MaShaoping","doi":"10.1145/3448127","DOIUrl":"https://doi.org/10.1145/3448127","url":null,"abstract":"Understanding user intent is essential for various retrieval tasks. By leveraging contextual information within sessions, e.g., query history and user click behaviors, search systems can capture user intent more accurately and thus perform better. However, most existing systems only consider intra-session contexts and may suffer from the problem of lacking contextual information, because short search sessions account for a large proportion in practical scenarios. We believe that in these scenarios, considering more contexts, e.g., cross-session dependencies, may help alleviate the problem and contribute to better performance. Therefore, we propose a novel Hybrid framework for Session Context Modeling (HSCM), which realizes session-level multi-task learning based on the self-attention mechanism. To alleviate the problem of lacking contextual information within current sessions, HSCM exploits the cross-session contexts by sampling user interactions under similar search intents in the historical sessions and further aggregating them into the local contexts. Besides, application of the self-attention mechanism rather than RNN-based frameworks in modeling session-level sequences also helps (1) better capture interactions within sessions, (2) represent the session contexts in parallelization. Experimental results on two practical search datasets show that HSCM not only outperforms strong baseline solutions such as HiNT, CARS, and BERTserini in document ranking, but also performs significantly better than most existing query suggestion methods. According to the results in an additional experiment, we have also found that HSCM is superior to most ranking models in click prediction.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"30 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80948937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
DGeye: Probabilistic Risk Perception and Prediction for Urban Dangerous Goods Management 城市危险货物管理的概率风险感知与预测
ACM Transactions on Information Systems (TOIS) Pub Date : 2021-05-06 DOI: 10.1145/3448256
Jingyuan Wang, Xin Lin, Y. Zuo, Junjie Wu
{"title":"DGeye: Probabilistic Risk Perception and Prediction for Urban Dangerous Goods Management","authors":"Jingyuan Wang, Xin Lin, Y. Zuo, Junjie Wu","doi":"10.1145/3448256","DOIUrl":"https://doi.org/10.1145/3448256","url":null,"abstract":"Recent years have witnessed the emergence of worldwide megalopolises and the accompanying public safety events, making urban safety a top priority in modern urban management. Among various threats, dangerous goods such as gas and hazardous chemicals transported through cities have bred repeated tragedies and become the deadly “bomb” we sleep with every day. While tremendous research efforts have been devoted to dealing with dangerous goods transportation (DGT) issues, further study is still in great need to quantify this problem and explore its intrinsic dynamics from a big data perspective. In this article, we present a novel system called DGeye, to feature a fusion between DGT trajectory data and residential population data for dangers perception and prediction. Specifically, DGeye first develops a probabilistic graphical model-based approach to mine spatio-temporally adjacent risk patterns from population-aware risk trajectories. Then, DGeye builds the novel causality network among risk patterns for risk pain-point identification, risk source attribution, and online risky state prediction. Experiments on both Beijing and Tianjin cities demonstrate the effectiveness of DGeye in real-life DGT risk management. As a case in point, our report powered by DGeye successfully drove the government to lay down gas pipelines for the famous Guijie food street in Beijing.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"46 1","pages":"1 - 30"},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89951433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信