光:先进制造(英文)Pub Date : 2023-01-01DOI: 10.37188/lam.2023.018
Di Wang, Nan-Nan Li, Yi-long Li, Yi Zheng, Zhong-Quan Nie, Zhao-Song Li, Fan Chu, Qiong-Hua Wang
{"title":"Large viewing angle holographic 3D display system based on maximum diffraction modulation","authors":"Di Wang, Nan-Nan Li, Yi-long Li, Yi Zheng, Zhong-Quan Nie, Zhao-Song Li, Fan Chu, Qiong-Hua Wang","doi":"10.37188/lam.2023.018","DOIUrl":"https://doi.org/10.37188/lam.2023.018","url":null,"abstract":"An ideal holographic 3D display should have the characteristics of large viewing angle, full color, and low speckle noise. However, the viewing angle of the holographic 3D display is usually limited by existing strategies, which vastly hinders its extensive application. In this paper, a large viewing angle holographic 3D display system based on maximum diffraction modulation is proposed. The core of the proposed system comprises the spatial light modulators (SLMs) and liquid crystal grating. We also present a new feasible scheme for the realization of large viewing angle holographic 3D display. This is achieved by considering the maximum diffraction angle of SLM as the limited diffraction modulation range of each image point. By doing so, we could not only give access to the maximum hologram size of the object, but also tune the reconstructed image of secondary diffraction by using a self-engineered liquid crystal grating. More importantly, the proposed maximum diffraction modulation scheme enables the viewing angle of the proposed system to be enlarged to 73.4°. The proposed system has huge application potential in the fields such as education, culture, and entertainment.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69984037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2023-01-01DOI: 10.37188/lam.2023.005
Qiannan Jia, Weiwei Tang, Wei Yan, Min Qiu
{"title":"Fibre tapering using plasmonic microheaters and deformation-induced pull","authors":"Qiannan Jia, Weiwei Tang, Wei Yan, Min Qiu","doi":"10.37188/lam.2023.005","DOIUrl":"https://doi.org/10.37188/lam.2023.005","url":null,"abstract":"Optical fibres with diameters at micro-or sub-micrometre scale are widely adopted as a convenient tool for studying light–matter interactions. To prepare such devices, two elements are indispensable: a heat source and a pulling force. In this paper, we report a novel fibre-tapering technique in which micro-sized plasmonic heaters and elaborately deformed optical fibres are compactly combined, free of flame and bulky pulling elements. Using this technique, micro-nano fibres with abrupt taper and ultra-short transition regions were successfully fabricated, which would otherwise be a challenge for traditional techniques. The compactness of the proposed system enabled it to be further transferred to a scanning electron microscope for in-situ monitoring of the tapering process. The essential dynamics of “heat and pull” was directly visualised with nanometre precision in real time and theoretically interpreted, thereby establishing an example for future in-situ observations of micro and nanoscale light-matter interactions.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69984230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2023-01-01DOI: 10.37188/lam.2023.009
Yang Zhu, Xiaofei Zang, Haoxiang Chi, Yiwen Zhou, Yiming Zhu, S. Zhuang
{"title":"Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions","authors":"Yang Zhu, Xiaofei Zang, Haoxiang Chi, Yiwen Zhou, Yiming Zhu, S. Zhuang","doi":"10.37188/lam.2023.009","DOIUrl":"https://doi.org/10.37188/lam.2023.009","url":null,"abstract":"","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69983801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
光:先进制造(英文)Pub Date : 2023-01-01DOI: 10.37188/lam.2023.014
Vincent Pelgrin, H. Yoon, E. Cassan, Zhipei Sun
{"title":"Hybrid integration of 2D materials for on-chip nonlinear photonics","authors":"Vincent Pelgrin, H. Yoon, E. Cassan, Zhipei Sun","doi":"10.37188/lam.2023.014","DOIUrl":"https://doi.org/10.37188/lam.2023.014","url":null,"abstract":"Interests surrounding the development of on-chip nonlinear optical devices have been consistently growing in the past decades due to the tremendous applications, such as quantum photonics, all-optical communications, optical computing, on-chip metrology, and sensing. Developing efficient on-chip nonlinear optical devices to meet the requirements of those applications brings the need for new directions to improve the existing photonic approaches. Recent research has directed the field of on-chip nonlinear optics toward the hybrid integration of two-dimensional layered materials (such as graphene, transition metal dichalcogenides, and black phosphorous) with various integrated platforms. The combination of well-known photonic chip design platforms (e.g., silicon, silicon nitride) and different two-dimensional layered materials has opened the road for more versatile and efficient structures and devices, which has the great potential to unlock numerous new possibilities. This review discusses the modeling and characterization of different hybrid photonic integration structures with two-dimensional materials, highlights the current state of the art examples, and presents an outlook for future prospects.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69983968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}