Fluid Dynamics Research最新文献

筛选
英文 中文
Stability examination of non-linear convection flow with partial slip phenomenon in a Riga plate channel 里加板槽中带有部分滑移现象的非线性对流的稳定性检验
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-09-11 DOI: 10.1088/1873-7005/ad73ff
Rakesh Kumar and Tanya Sharma
{"title":"Stability examination of non-linear convection flow with partial slip phenomenon in a Riga plate channel","authors":"Rakesh Kumar and Tanya Sharma","doi":"10.1088/1873-7005/ad73ff","DOIUrl":"https://doi.org/10.1088/1873-7005/ad73ff","url":null,"abstract":"The present work examines the linear stability of non-linear convected flow inside a Riga plate channel. The channel is filled with hybrid nanoliquid and is under the novel influence of the partial slip phenomenon in the present scenario. The left domain of the channel is supported by the Riga sheet whereas the right part is bounded by a sheet of slippery nature. The stability model for this partial slip mechanism is developed in the form of an eigenvalue problem which is explored via the Chebyshev pseudospectral method in combination with the QZ-algorithm. It is reported that the convection forces in hybrid nanofluid are amplified with Riga magnetic number (Hr) under slip/no-slip assumptions. It is interestingly noted that the flow is destabilized by 11.47 with non-linear convection (Nc) when considering no-slip at the right-hand sheet. However, the stability region is enlarged with Nc by 9.53 in the presence of slip at the right-hand sheet. The partial-slip (γ) assumption in the channel decelerates the growth rate of disturbances. The increment in -nanoparticles over the fixed volume of -nanoparticles hampers the instability of the hybrid nanofluid mixture.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"12 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of oscillated wall on the turbulent structure and heat transfer of three-dimensional wall jet 振荡壁对三维壁面射流湍流结构和传热的影响
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-09-11 DOI: 10.1088/1873-7005/ad7400
Muthana Mraweh Khairi, Seyed Esmail Razavi, Faramarz Talati and Mir Biuok Ehghaghi Bonab
{"title":"Effects of oscillated wall on the turbulent structure and heat transfer of three-dimensional wall jet","authors":"Muthana Mraweh Khairi, Seyed Esmail Razavi, Faramarz Talati and Mir Biuok Ehghaghi Bonab","doi":"10.1088/1873-7005/ad7400","DOIUrl":"https://doi.org/10.1088/1873-7005/ad7400","url":null,"abstract":"In this research, a three-dimensional turbulent wall jet was modeled using an Improved Delayed Detached Eddy Simulation to examine its flow and thermal properties. The accuracy of the simulation was confirmed by comparing key flow characteristics with experimental data. The study involved introducing an oscillating wall and a hot wall within the computational domain to observe their effects on thermal behavior and turbulence structure. OpenFOAM v2012 was utilized for the simulations based on a 3D channel design. The turbulent structure exhibited distinct separated, small-scale, and large-scale turbulence within the domain. The findings indicated that reducing the computational domain height increased the Nusselt number, and positioning the hot wall near the core of the jet also increased the Nusselt number. Additionally, increasing the frequency and amplitude of the oscillating wall resulted in a higher Nusselt number. These results contribute to a deeper understanding of the fluid physics in this specific scenario and can enhance knowledge in the fields of solid and turbulence fluid structure interaction. The analysis of the turbulence structure revealed that a lower domain height created elongated turbulence structures, and placing the hot wall at the end of the computational domain had less impact on smoothing the turbulence structures due to the presence of very strong, large turbulence structures.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"7 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mode analysis for multiple parameter conditions of nozzle internal unsteady flow using Parametric Global Proper Orthogonal Decomposition 利用参数全局适当正交分解对喷嘴内部不稳定流的多参数条件进行模式分析
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-09-06 DOI: 10.1088/1873-7005/ad716a
Mikimasa Kawaguchi, Masato Iwasaki, Ryoutaro Nakayama, Ryo Yamamoto, Akira Nakashima, Yoichi Ogata
{"title":"Mode analysis for multiple parameter conditions of nozzle internal unsteady flow using Parametric Global Proper Orthogonal Decomposition","authors":"Mikimasa Kawaguchi, Masato Iwasaki, Ryoutaro Nakayama, Ryo Yamamoto, Akira Nakashima, Yoichi Ogata","doi":"10.1088/1873-7005/ad716a","DOIUrl":"https://doi.org/10.1088/1873-7005/ad716a","url":null,"abstract":"Analysis methods based on mode decomposition have been proposed to describe the characteristics of flow phenomena. Among them, proper orthogonal decomposition (POD), which decomposes modes into eigenvalues and basis vectors, has long been used. Many studies have shown that POD is a useful method for capturing the characteristics of unsteady flow. In particular, Snapshot POD has attracted much recent attention and has been used to solve unsteady flow problems. However, the basis vectors of the mode obtained by conventional POD is different for each condition. Therefore, whether the basis vectors of each mode are switching in the direction of parameters (e.g. different shapes or different Reynolds numbers) or whether they develop or decay is difficult to discuss. As a result, discussions on conventional POD tend to be qualitative. To address this issue, the present study uses Parametric Global POD, a method that perfectly matches basis vectors in results with different parameters (in this study, different Reynolds numbers). Parametric Global POD method was applied to the analysis of the flow field in a curved pipe and found to capture the development or decay of modes with major basis vectors in the direction of parameters, which is difficult to achieve with conventional POD methods.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"27 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of variable fluidic properties with varying magnetic influence on an unsteady radiated nanofluid flow on the stagnant point region of a spinning sphere: a numerical exploration 磁场影响下的可变流体特性对旋转球体停滞点区域非稳定辐射纳米流体流动的分析:数值探索
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-08-27 DOI: 10.1088/1873-7005/ad6a38
Raju Bag, Prabir Kumar Kundu
{"title":"Analysis of variable fluidic properties with varying magnetic influence on an unsteady radiated nanofluid flow on the stagnant point region of a spinning sphere: a numerical exploration","authors":"Raju Bag, Prabir Kumar Kundu","doi":"10.1088/1873-7005/ad6a38","DOIUrl":"https://doi.org/10.1088/1873-7005/ad6a38","url":null,"abstract":"The purpose of this article is to invent the impact of inconstant properties of fluids on the nanofluidic stream towards the stagnation area of a revolving sphere. The motion is treated as an unsteady radiated flow with a nonlinear sort of heat radiation. It is presumed to have Brownian motion &amp; thermophoretic impact in our flow model. Additionally, a variable magnetic influence is addressed perpendicularly on the spherical surface. A suitable alteration has been applied to make dimensionless of our prime flow profiles. The translated equations and the limiting restrictions are solved through a numerical approach. The well established method RK4 Shooting technique is utilized here with Maple 2017 software. In the exploration of the consequences of requisite parameters on thermal, concentration, and flow features, numerous schematics are involved. The nature of physical quantities like Nusselt numbers, friction coefficients, and Sherwood numbers is stated in a tabular manner. It is perceived from the outcomes that the fluid velocity towards the <italic toggle=\"yes\">x</italic>-direction is reduced for the variable viscosity parameter, whereas the unsteadiness parameter promotes it. The enhancement of inconstant thermal conductivity brings a positive influence on the thermal profile of fluid. Nusselt number drops against the thermal radiation &amp; variable viscosity with a rates 4.50% and 25.88% correspondingly.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"9 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Lundgren hierarchy of helically symmetric turbulence 论螺旋对称湍流的伦德格伦层次结构
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-08-22 DOI: 10.1088/1873-7005/ad6c7b
V Stegmayer, S Görtz, S Akbari, M Oberlack
{"title":"On the Lundgren hierarchy of helically symmetric turbulence","authors":"V Stegmayer, S Görtz, S Akbari, M Oberlack","doi":"10.1088/1873-7005/ad6c7b","DOIUrl":"https://doi.org/10.1088/1873-7005/ad6c7b","url":null,"abstract":"This paper analyzes the reduction of the infinite Lundgren–Monin–Novikov (LMN) hierarchy of probability density functions (PDFs) in the statistical theory of helically symmetric turbulence. Lundgren’s hierarchy is considered a complete model, i.e. fully describes the joint multi-point statistic of turbulence though at the expense of dealing with an infinite set of integro-differential equations. The LMN hierarchy and its respective side-conditions are transformed to helical coordinates and thus are dimesionally reduced. In the course of development, a number of key questions were solved, namely in particular the transformation of PDFs and sample space velocities into orthonormal coordinate systems. In a validity check it is shown, that the mean momentum equations derived from the helical LMN hierarchy via statistical moment integration are identical to the mean momentum equations derived by direct ensemble averaging the Navier–Stokes equation, in helically symmetric form. Finally, we derive the equation for the characteristic function equivalent to the PDF equation in a helically symmetric frame, which allows to generate arbitrary <inline-formula>\u0000<tex-math><?CDATA $n{mathrm{^{th}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>n</mml:mi><mml:mrow><mml:mi>t</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"fdrad6c7bieqn1.gif\"></inline-graphic></inline-formula>-order statistical moments by simple differentiation.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"62 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian parameter estimation and evaluation of the K-ω shear stress transport model for plane impinging jets 平面冲击射流 K-ω 剪切应力传输模型的贝叶斯参数估计与评估
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-07-10 DOI: 10.1088/1873-7005/ad5abc
M L Lanahan, S I Abdel-Khalik and M Yoda
{"title":"Bayesian parameter estimation and evaluation of the K-ω shear stress transport model for plane impinging jets","authors":"M L Lanahan, S I Abdel-Khalik and M Yoda","doi":"10.1088/1873-7005/ad5abc","DOIUrl":"https://doi.org/10.1088/1873-7005/ad5abc","url":null,"abstract":"Numerical simulations with semi-empirical turbulence models are commonly used to model impinging jets, often used for cooling solid surfaces. In this work, the constants in the k-ω shear stress transport model in ANSYS FLUENT are calibrated to experimental velocity and heat transfer data for a plane turbulent impinging air jet to determine if Kennedy-O’Hagan calibration (Kennedy and O’Hagan 2001 J. R. Stat. Soc. B 63 425–64) can improve predictions of near-surface velocities and surface Nusselt numbers for similar flows. Impinging jets have been proposed to cool the target plates of the divertor in future magnetic fusion energy reactors, where simulations are used to estimate divertor performance. The flat-plate divertor (Wang et al 2009 Fusion Sci. Technol.56 1023–7) uses a plane jet of helium issuing from a B = 0.5 mm slot to cool a surface with radius of curvature of 44B at a distance 4B from the slot. Predictions from the calibrated numerical model are compared with independent experimental data at different flow conditions, as well as surface temperature data for a flat plate divertor test section. The contribution of this work is evaluation of the accuracy of a calibrated turbulence model for modest extrapolations in flow geometry and flow conditions for a plane impinging jet.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"228 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sampling of plasma plume from atmosphere into vacuum for reliable Langmuir probe diagnostics 从大气到真空的等离子体羽流采样,以进行可靠的朗缪尔探针诊断
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-07-09 DOI: 10.1088/1873-7005/ad5b18
James Raja S, Lintu Rajan, Venu Anand
{"title":"Sampling of plasma plume from atmosphere into vacuum for reliable Langmuir probe diagnostics","authors":"James Raja S, Lintu Rajan, Venu Anand","doi":"10.1088/1873-7005/ad5b18","DOIUrl":"https://doi.org/10.1088/1873-7005/ad5b18","url":null,"abstract":"Langmuir probes cannot be used to diagnose cold atmospheric plasma jet, because their presence in the high electric field after-glow region modifies the plasma parameters that they are intended to measure. Here, we propose a system to sample the plasma plume from ambient conditions into a low-pressure region, where probe analysis can be accomplished. The effect of such a sampling process on the number density and velocity of the gas has been studied through simulations and using analytical equations. Simulation results regarding the effect of chamber and orifice dimensions on these parameters, have been presented. Based on this study an experimental chamber was fabricated and Langmuir probe analysis of the sampled plasma was done. Continuum flowing plasma theory was applied and the plasma density and electron temperature were estimated to be 1.8 × 10<sup>20</sup>m<sup>−3</sup> and 4.7 eV respectively for the operating condition of 3 W plasma power at 12 kHz.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"60 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial dynamics of two immiscible second-grade and couple stress fluids in rotating and counter-rotating scenarios 旋转和反旋转情况下两种不相溶二级流体和耦合应力流体的界面动力学
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-06-13 DOI: 10.1088/1873-7005/ad5169
Sammar Bashir and Muhammad Sajid
{"title":"Interfacial dynamics of two immiscible second-grade and couple stress fluids in rotating and counter-rotating scenarios","authors":"Sammar Bashir and Muhammad Sajid","doi":"10.1088/1873-7005/ad5169","DOIUrl":"https://doi.org/10.1088/1873-7005/ad5169","url":null,"abstract":"This article aims to examine the dynamics of interfacial flow that occurs when a layer of second-grade fluid rotates over another layer of uniformly rotating immiscible couple stress fluid. Fluid models with different densities, pressures, velocities, and viscosities exhibit intriguing flow properties. Under the restriction of parameter , where (angular velocities ratio) and (densities ratio), the occurrence of similarity solutions under coupling and viscoelastic effects across the interface for both cases of co-and-counter rotation is investigated. In contrast to the rotation of upper fluid, the couple stress fluid layer can counter-rotate. An advanced numerical method known as the Keller box is employed to thoroughly analyze the multiple aspects of the flow. The dominance of the couple stress fluid has been observed in shaping the dynamics of interfacial flow, significantly impacting phenomena such as the generation of inward/outward jets, Ekman pumping/suction, and the development of recirculation regions. Lower-layer far-field flow demonstrates transitions, oscillating between inflow and outflow, depending on parameters and . These findings illustrate an interesting interplay between rheological parameters, providing perspectives into the complicated behaviors of immiscible rotating fluids under different characteristics and useful implications for a variety of practical applications.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"111 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stall characteristics of wavy leading-edge airfoil in subsonic and transonic airflows 波状前缘机翼在亚音速和跨音速气流中的失速特性
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-05-06 DOI: 10.1088/1873-7005/ad3e28
Yongsheng Zhao, Jiang Zhang, Jingang Dong, Junfei Wu and Jian Zhou
{"title":"Stall characteristics of wavy leading-edge airfoil in subsonic and transonic airflows","authors":"Yongsheng Zhao, Jiang Zhang, Jingang Dong, Junfei Wu and Jian Zhou","doi":"10.1088/1873-7005/ad3e28","DOIUrl":"https://doi.org/10.1088/1873-7005/ad3e28","url":null,"abstract":"Based on the bioinspired wavy leading-edge, the stall characteristics of the NACA0012 airfoil are optimized. In this paper, the semicircle plus line segment is used to obtain the wavy leading edge. The aerodynamic forces of the airfoil are measured by a high-precision balance, and the detailed flow features of the airfoil are obtained by the oil flow tests. Then, combined with numerical simulation, the optimization mechanism is obtained. The operating conditions are as follows: Mach number ranging from 0.4 to 0.8, and angle of attack ranging from −4° to 25°. The results show that in high speed airflows, compared with the basic airfoil, the lift coefficient of the wavy leading-edge airfoil does not decrease sharply with the increase of the angle of attack, and the drag coefficient of the wavy leading-edge airfoil is similar to the basic airfoil; among the three types of airfoils studied, the larger wavy leading-edge feature size has better aerodynamic characteristics; combined with the numerical simulation results, it can be seen that the stall mechanism of airfoils varies at different Mach numbers. The wavy leading-edge generate streamwise vortex. The streamwise vortices increase energy transport in the boundary layer. Therefore, the separation zone moves toward the trailing edge of the airfoil, and the stall characteristics of the airfoil are optimized.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"29 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turbulent/non-turbulent interface of the turbulent boundary-layer over a spanwise-heterogeneous converging/diverging riblets rough wall 跨向均质收敛/发散波纹粗糙壁上湍流边界层的湍流/非湍流界面
IF 1.5 4区 工程技术
Fluid Dynamics Research Pub Date : 2024-03-05 DOI: 10.1088/1873-7005/ad2b74
Jianda Huang, Honglei Bai
{"title":"Turbulent/non-turbulent interface of the turbulent boundary-layer over a spanwise-heterogeneous converging/diverging riblets rough wall","authors":"Jianda Huang, Honglei Bai","doi":"10.1088/1873-7005/ad2b74","DOIUrl":"https://doi.org/10.1088/1873-7005/ad2b74","url":null,"abstract":"Turbulent boundary layer (TBL) flows over various spanwise-heterogeneous rough walls exhibit spanwise variations in turbulence statistics, implying modifications of the turbulent/non-turbulent interface (T/NTI). In this work, based on the datasets of TBL flows over a spanwise-alternating converging/diverging riblets wall, we investigate behavior of T/NTI, properties of ‘bubble’ and ‘drop’ that are associated with T/NTI, as well as connections between T/NTI and large-scale structures within the boundary layer. The flow datasets were obtained through stereoscopic particle image velocimetry measurements on the cross-stream plane of the TBL flow at a Reynolds number <inline-formula>\u0000<tex-math><?CDATA $R{e_theta }$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi>R</mml:mi><mml:mrow><mml:msub><mml:mi>e</mml:mi><mml:mi>θ</mml:mi></mml:msub></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"fdrad2b74ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> = 1.3 × 10<sup>4</sup>. The T/NTI and associated ‘bubble’ and ‘drop’ are identified using a kinetic energy criterion, while the large-scale structures by a streak detection algorithm. It is observed that the T/NTI height and the occurrence of ‘bubble’ and ‘drop’ display a spanwise-heterogeneous feature, with lower T/NTI height and higher occurrence probability of ‘bubble’ over the diverging section of riblets than over the converging section of riblets. Results of conditional average show that the ‘bubble’ is associated with positive streamwise fluctuations, common-down flow and a pair of counter-rotating streamwise vortices, while the ‘drop’ with negative streamwise fluctuation, common-up flow and a pair of counter-rotating streamwise vortices. Probability density functions of the ‘bubble’ size and fractal dimensions of the T/NTI are found similar for both the riblets and smooth wall flows. Furthermore, it is observed that the large-scale low-speed structures occurring preferentially over the converging section of riblets play a role in elevating T/NTI while the large-scale high-speed ones over the diverging section of riblets lowering down T/NTI.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"47 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信