Few-Body Systems最新文献

筛选
英文 中文
Correction to: Influence of Position-Dependent Effective Mass on One-Dimensional Bose-Einstein Condensates Using the Von Roos Approach
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-03-08 DOI: 10.1007/s00601-025-01990-0
Somia Miraoui, Abdelhakim Benkrane, Ahmed Hocine
{"title":"Correction to: Influence of Position-Dependent Effective Mass on One-Dimensional Bose-Einstein Condensates Using the Von Roos Approach","authors":"Somia Miraoui, Abdelhakim Benkrane, Ahmed Hocine","doi":"10.1007/s00601-025-01990-0","DOIUrl":"10.1007/s00601-025-01990-0","url":null,"abstract":"","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Stability of Few-Body Quantum Systems
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-02-20 DOI: 10.1007/s00601-025-01989-7
T. Frederico, H. O. U. Fynbo, A. Kievsky, J. M. Richard
{"title":"Critical Stability of Few-Body Quantum Systems","authors":"T. Frederico, H. O. U. Fynbo, A. Kievsky, J. M. Richard","doi":"10.1007/s00601-025-01989-7","DOIUrl":"10.1007/s00601-025-01989-7","url":null,"abstract":"","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Motion States in the Restricted Five-Body Problem with Perturbing Forces
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-02-14 DOI: 10.1007/s00601-025-01988-8
Sanjeev Kumar, A. K. Awasthi
{"title":"Characterizing Motion States in the Restricted Five-Body Problem with Perturbing Forces","authors":"Sanjeev Kumar,&nbsp;A. K. Awasthi","doi":"10.1007/s00601-025-01988-8","DOIUrl":"10.1007/s00601-025-01988-8","url":null,"abstract":"<div><p>The <i>n</i>-body problem, a cornerstone of celestial mechanics, has been the subject of extensive research for centuries, with particular emphasis on the complexities of the three-body problem under various perturbations. These perturbations include oblateness, triaxiality, radiation pressure, and the effects of Coriolis and centrifugal forces. Recent advancements have shifted focus to systems involving more than three bodies, with notable work in the four-body problem. In this study, we extend the analysis to the five-body problem, examining its chaotic behavior and identifying regions of libration points. By varying the masses of the bodies across distinct surface points, we analyze the system’s dynamics, uncovering fractal zones within the problem. Additionally, we perform a stability analysis of the libration points, offering new insights into the behavior and stability of the five-body system. This research contributes to a deeper understanding of multi-body interactions and their implications in both theoretical and applied contexts.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Compression on the Ground and Low-Lying Excited Doublet States of Plasma-Embedded Lithium Atom
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-02-06 DOI: 10.1007/s00601-025-01981-1
Salah Doma, Gamal Roston, Mostafa Ahmed
{"title":"Impacts of Compression on the Ground and Low-Lying Excited Doublet States of Plasma-Embedded Lithium Atom","authors":"Salah Doma,&nbsp;Gamal Roston,&nbsp;Mostafa Ahmed","doi":"10.1007/s00601-025-01981-1","DOIUrl":"10.1007/s00601-025-01981-1","url":null,"abstract":"<div><p>The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1<span>(s^{{2}})</span><i>ns</i>, 1<span>(s^{{2}}n)</span>p, and 1<span>(s^{{2}}n)</span>d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-025-01981-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Non-linearity on the Solutions of Manning-Rosen and Hulthén Three-Dimensional Potentials Using Quantum Supersymmetry and N–U Methods: Application to CO(^mathbf{+}), BO and CN Diatomic Molecules
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-02-05 DOI: 10.1007/s00601-025-01984-y
Abdeslam Haddouche, Rabia Yekken
{"title":"The Effects of Non-linearity on the Solutions of Manning-Rosen and Hulthén Three-Dimensional Potentials Using Quantum Supersymmetry and N–U Methods: Application to CO(^mathbf{+}), BO and CN Diatomic Molecules","authors":"Abdeslam Haddouche,&nbsp;Rabia Yekken","doi":"10.1007/s00601-025-01984-y","DOIUrl":"10.1007/s00601-025-01984-y","url":null,"abstract":"<div><p>The three-dimensional Schrödinger equation, where a non-linearity is caused by the introduction of an energy-dependent potential, is solved in the case of Energy-Dependent Manning-Rosen Potential (EDMRP) by means of extended quantum supersymmetry (EQS) combined with shape invariance, and Nikiforov–Uvarov (N–U) methods, using in both cases the Pekeris approximation for the centrifugal term. On the one hand, after determining the potential parameters according to experimental data, EQS and N–U results are compared to the numerical ones to show the effectiveness of our calculations. On the other hand, the effects of the non-linearity introduced via energy-dependent potentials in the Schrödinger equation are shown through a comparison made between energy-dependent and position-only-dependent cases of the Manning-Rosen potential. We considered some diatomic molecules CO<span>(^{+})</span>, BO, and CN with the experimental values of their potential parameters. Our results allowed us to consider, as a particular case, the three-dimensional energy-dependent Hulthén potential.\u0000</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masses and Magnetic Moments of Singly Heavy Pentaquarks using the Gursey-Radicati Mass Formula, Effective Mass, and Screened Charge Scheme
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-02-04 DOI: 10.1007/s00601-025-01986-w
Ankush Sharma, Alka Upadhyay
{"title":"Masses and Magnetic Moments of Singly Heavy Pentaquarks using the Gursey-Radicati Mass Formula, Effective Mass, and Screened Charge Scheme","authors":"Ankush Sharma,&nbsp;Alka Upadhyay","doi":"10.1007/s00601-025-01986-w","DOIUrl":"10.1007/s00601-025-01986-w","url":null,"abstract":"<div><p>Motivated by the recent discovery of single heavy tetraquark structures, <span>(T_{cbar{s}0}^a (2900)^{++})</span> and <span>(T_{cbar{s}0}^a(2900)^0)</span> by the LHCb collaboration, masses and magnetic moments of singly heavy pentaquark states are estimated in this work. To classify the singly heavy pentaquark structures, we employ the special unitary representation. By using the SU(3) flavor representation, singly heavy pentaquark states are classified into the allowed flavor multiplets. Also, by using the extension of the Gursey-Radicati mass formula and the effective mass scheme, masses of singly heavy pentaquark states are estimated. Further, magnetic moments of singly heavy pentaquarks have been calculated using the effective mass and the screened charge schemes. A thorough comparison of our results shows reasonable agreement with the available theoretical data and may be helpful for future experimental studies.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarizability of the Kaonic Helium Atom
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-01-31 DOI: 10.1007/s00601-025-01987-9
D. T. Aznabayev, A. K. Bekbaev, Vladimir I. Korobov
{"title":"Polarizability of the Kaonic Helium Atom","authors":"D. T. Aznabayev,&nbsp;A. K. Bekbaev,&nbsp;Vladimir I. Korobov","doi":"10.1007/s00601-025-01987-9","DOIUrl":"10.1007/s00601-025-01987-9","url":null,"abstract":"<div><p>The static dipole polarizability of metastable states in the kaonic helium atoms is studied. We use the complex coordinate rotation method to properly account for the resonant nature of the states. Our calculations show that some of the states are not stable with respect to collisional quenching in a dense helium target and should not be detected in the experiment.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Position-Dependent Effective Mass on One-Dimensional Bose-Einstein Condensates Using the Von Roos Approach
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-01-29 DOI: 10.1007/s00601-025-01985-x
Somia Miraoui, Abdelhakim Benkrane, Ahmed Hocine
{"title":"Influence of Position-Dependent Effective Mass on One-Dimensional Bose-Einstein Condensates Using the Von Roos Approach","authors":"Somia Miraoui,&nbsp;Abdelhakim Benkrane,&nbsp;Ahmed Hocine","doi":"10.1007/s00601-025-01985-x","DOIUrl":"10.1007/s00601-025-01985-x","url":null,"abstract":"<div><p>In this paper, we study quantum droplets in one dimension under the influence of spacetime curvature by redefining the momentum operator, resulting in a maximum length and a minimum momentum, consistent with anti-de Sitter space (AdS). By examining this effect through the <span>(alpha )</span> parameter on the exact solution of free quantum droplets, we found that the relationship between the number of atoms and the chemical potential differs from the ordinary case. Additionally, we discovered that the flat-top shape can disappear and transform into a Gaussian shape in the presence of the maximum length (minimum momentum). Moreover, we found that the interaction of quantum droplets with spacetime curvature causes them to have a larger size. We also studied this effect on the variational solution via Gaussian ansatz for small droplets, we concluded that <span>(alpha )</span> decreases the stability and self-localisation of the quantum droplets.\u0000</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Tunnelling of a Composite Particle in Presence of a Magnetic Field
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-01-27 DOI: 10.1007/s00601-025-01982-0
Bernard Faulend, Jan Dragašević
{"title":"Correction: Tunnelling of a Composite Particle in Presence of a Magnetic Field","authors":"Bernard Faulend,&nbsp;Jan Dragašević","doi":"10.1007/s00601-025-01982-0","DOIUrl":"10.1007/s00601-025-01982-0","url":null,"abstract":"","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarizabilities of Negatively Charged Helium-Like Ions with Exponential-Cosine-Screened Coulomb Potentials
IF 1.7 4区 物理与天体物理
Few-Body Systems Pub Date : 2025-01-27 DOI: 10.1007/s00601-025-01980-2
Yu-Qi Yang, Zishi Jiang, Bing-Kuan Lyu, Sabyasachi Kar
{"title":"Polarizabilities of Negatively Charged Helium-Like Ions with Exponential-Cosine-Screened Coulomb Potentials","authors":"Yu-Qi Yang,&nbsp;Zishi Jiang,&nbsp;Bing-Kuan Lyu,&nbsp;Sabyasachi Kar","doi":"10.1007/s00601-025-01980-2","DOIUrl":"10.1007/s00601-025-01980-2","url":null,"abstract":"<div><p>We investigate the multipole polarizabilities of negatively charged helium-like ions interacting with exponential-cosine-screened Coulomb potentials using correlated exponential wave functions. The dynamic dipole and quadrupole polarizabilities of negatively charged helium-like ions <span>(^{mathrm {infty }})</span>H<span>(^{mathrm {-}})</span>, <span>(^{textrm{1}})</span>H<span>(^{mathrm {-}})</span>, D<span>(^{mathrm {-}})</span>, T<span>(^{mathrm {-}})</span>, Mu<span>(^{mathrm {-}})</span>, Pi<span>(^{mathrm {- }})</span>are presented as functions of screening parameter. The static dipole and quadrupole polarizabilities, and the ground state energies are presented in terms of nuclear mass and screening parameter.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信