{"title":"Disturbance estimation backstepping flight control based on the discrete Fourier transform","authors":"Ruichen Ming, Xiaoxiong Liu, Yu Li, Weiguo Zhang","doi":"10.1002/asjc.3491","DOIUrl":"https://doi.org/10.1002/asjc.3491","url":null,"abstract":"This paper presents the design of an adaptive backstepping (BS) nonlinear controller for time‐varying disturbances in flight control. The discrete Fourier transform (DFT) is used to design an adaptive law to suppress the influence of time‐varying disturbances. The traditional adaptive BS method ignores the derivatives of disturbances in the deduction process and cannot address certain fast, time‐varying disturbances well. Therefore, an improved adaptive BS method based on the DFT is proposed. Instead of estimating the disturbance directly, the proposed method obtains the time‐domain expression of the disturbance indirectly by estimating the disturbance spectrum and performing inverse DFT. The proposed method effectively overcomes the inability of the traditional adaptive BS method to estimate fast, time‐varying disturbances accurately. Finally, the proposed method is compared with traditional adaptive BS and radial basis function (RBF) neural network control methods. Simulation results confirm that the proposed method outperforms other methods under Gaussian disturbance and turbulence.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"58 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model‐free adaptive load frequency control for power systems with wind penetration under deregulation environment","authors":"Yiming Zeng, Xuhui Bu, Yanling Yin","doi":"10.1002/asjc.3481","DOIUrl":"https://doi.org/10.1002/asjc.3481","url":null,"abstract":"With the gradual deregulation of the power system by the power department, the power system has developed into a large‐scale and multiregional control system. Because of the power system internal complexity enhancing, the stable operation of power system becomes increasingly difficult. This paper analyzes the load frequency control problem of multiregional interconnected power system with wind energy. This study designs an improved model‐free adaptive control algorithm based on I/O data. It avoids model establishment of the multiregional power system. It also effectively solves the problem of frequency stability control under the influence of load change, introducing the generation participation matrix to simulate bilateral contracts under the power market. The dynamic evolution relationship of the system with the generation participation matrix is established, taking a three‐regional power system with wind energy as an example. Frequency fluctuations in all three regions are between . Convergence times of frequency deviation are all within 30 s, much less than the response time of load frequency control. The simulation results further demonstrate the effectiveness of the proposed algorithm, comparing the control algorithm proposed in this paper with other algorithms, which proves that the proposed algorithm has good control performance.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"36 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed fault estimation observer design for nonlinear multi‐agent systems with directed graphs","authors":"Yuhui Weng, Jianwei Liu, Huiwen Liu, Ruizhi Qin","doi":"10.1002/asjc.3485","DOIUrl":"https://doi.org/10.1002/asjc.3485","url":null,"abstract":"This paper addresses the issue of fault estimation in nonlinear multi‐agent systems characterized by a leader–follower structure within directed graphs. The proposed approach begins by developing a distributed fault observer that utilizes relative output estimation error. Subsequently, a dynamic error system is constructed to convert the fault estimation problem into a stability problem for the dynamic error system. Finally, the conditions for achieving asymptotic boundedness of the dynamic error system are presented in the form of linear matrix inequalities. Simulation results substantiate the efficacy of the proposed method, revealing the ability of the distributed fault observer to accurately estimate faults occurring in multiple followers of the multi‐agent system.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Event‐triggered shared control for Euler–Lagrange systems with actuator fault and unknown control direction","authors":"Xiaoying Feng, Xiaoyu Zhang","doi":"10.1002/asjc.3496","DOIUrl":"https://doi.org/10.1002/asjc.3496","url":null,"abstract":"Security is of paramount importance in the operation of human‐controlled mechanical systems. In the unfortunate event of an accident, the operator may find themselves in a state of distress. This research focuses on the study of adaptive event‐triggered shared control techniques for uncertain Euler–Lagrange systems afflicted by actuator faults and the presence of unknown disturbances. Unlike existing results on shared control, the uncertain Euler–Lagrange system considered in this study contains both an unknown control direction and actuator faults, making it more practical. Furthermore, the controller we have designed demonstrates enhanced stability in the face of these challenges. To counteract the impact of unknown control direction, we introduce a state feedback controller employing Nussbaum functions. Additionally, the devised event‐triggered mechanism serves to reduce the system's network communication resource utilization. The implementation of our shared control strategy ensures asymptotic tracking of target trajectories by the system's outputs while maintaining consistent operation within a defined safe region. Finally, a simulated example is presented to validate the effectiveness of our proposed methodologies.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"7 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jawhar Ghommam, Lamia Iftekhar, Mohammad H. Rahman, Maarouf Saad
{"title":"Cooperative learning‐based practical formation‐containment control with prescribed performance for heterogeneous clusters of UAV/USV","authors":"Jawhar Ghommam, Lamia Iftekhar, Mohammad H. Rahman, Maarouf Saad","doi":"10.1002/asjc.3480","DOIUrl":"https://doi.org/10.1002/asjc.3480","url":null,"abstract":"SummaryIn this paper, a new approach for formation‐containment control with prescribed performances is introduced for heterogeneous autonomous vehicles involving a cluster of leader unmanned aerial vehicles (UAVs) and follower unmanned surface vessels (USVs). We introduce a two‐layer distributed control system: The upper layer focuses on guiding the UAVs to form a scalable lattice while synchronizing their movement along a predefined path, and the second layer guides the USVs to enter the convex hull formed by the UAVs, ensuring collision‐free operation with static/dynamic objects. To prevent collisions and ensure lattice formation, a set of well‐defined bump functions are utilized in the design of the backstepping control algorithm. Managing virtual controls, we incorporate a nonlinear dynamic surface control (NDSC), while a universal barrier function enhances the convergence of formation tracking errors. Furthermore, each USV employs a cooperative adaptive learning neural network to handle uncertainties in heterogeneous vehicle models. Utilizing the Lyapunov theorem, the stability of the formation‐containment of UAV/USV is achieved, and all signals in the formation‐containment systems are semiglobal uniform ultimate bounded (SGUUB). A simulation example showcases the effectiveness of our proposed approach, highlighting contributions in collision avoidance, synchronization speed, and adaptive learning. Our work advances the heterogeneous formation‐containment literature towards more realistic scenarios with safety‐critical considerations amidst multiple layers of uncertainties and unknown parameters.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"18 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming‐Rui Liu, Li‐Bing Wu, Ming Chen, Guo‐Fei Cui, Qi Chen
{"title":"Model‐based event‐triggered leaderless consensus control for nonlinear pure‐feedback multi‐agent systems","authors":"Ming‐Rui Liu, Li‐Bing Wu, Ming Chen, Guo‐Fei Cui, Qi Chen","doi":"10.1002/asjc.3486","DOIUrl":"https://doi.org/10.1002/asjc.3486","url":null,"abstract":"SummaryThis article investigates a model‐based event‐triggered adaptive leaderless consensus control problem for one category of nonlinear pure‐feedback multi‐agent systems (MASs). The implicit function‐based median theorem for decoupling is applied to deal with the over‐fuzzy as well as feedback linearization issues. The feature extraction approach is introduced to solve the difficulty of unequal dimensionality of variables due to the inter‐agents information interaction. Then, by constructing the corresponding adaptive model and utilizing event‐based neural network (NN), a novel distributed design methodology for MAS‐based control input and agent weight‐based dynamic triggering threshold is presented. Through the impulse‐based Lyapunov theory analysis, the designed strategy not just guarantees the stability of the proposed system but then also ensures the boundedness of all signals within the closed‐loop system. Eventually, after verifying the absence of Zeno behavior and ensuring the achievement of the desired consensus tracking, the usefulness of the developed control scheme is justified by a numerical simulation instance.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"58 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Idael Oliva‐Leal, Jorge Said Cervantes‐Rojas, Rogelio Lozano, Iván González‐Hernández
{"title":"Optimized chattering‐attenuated sliding mode controller for a perturbed VTOL system","authors":"Idael Oliva‐Leal, Jorge Said Cervantes‐Rojas, Rogelio Lozano, Iván González‐Hernández","doi":"10.1002/asjc.3492","DOIUrl":"https://doi.org/10.1002/asjc.3492","url":null,"abstract":"This study presents a novel design of an optimized chattering‐attenuated quasi‐sliding mode controller for the stabilization of a vertical take‐off and landing aircraft affected by external disturbances. We propose a methodology based on a particle swarm optimization algorithm to provide an optimal boundary layer thickness of the quasi‐sliding mode controller (QSMC) structure based on a sigmoid‐type function approximation to reduce the chattering noise in the control signal while an adequate stabilization quality is guaranteed. This represents an alternative to the common strategies based on a trial and error tuning of such boundary layer thickness of sigmoid‐type approximations. Also, the Lyapunov formalism is applied to restrict the search space of the QSMC gain to guarantee stability conditions. Some simulation tests were carried out to demonstrate the enhanced chattering attenuation capability of the proposed solution against a standard sliding mode controller and the superior stabilization performance versus other robust controllers.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"2 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive optimal control strategy of fuel economy for fuel cell battery storage system using in HEV applications","authors":"Jiangtao Fu, Yulin Fu, Zhumu Fu, Shuzhong Song","doi":"10.1002/asjc.3490","DOIUrl":"https://doi.org/10.1002/asjc.3490","url":null,"abstract":"Fuel cell stack (FCS) is a practical power source for new energy vehicle applications, and fuel economy is a problem that many researchers are concerned about. In this paper, an adaptive real‐time control strategy aiming at improving fuel efficiency is proposed; the control purpose is to distribute the power requirement between the FCS and the battery to achieve good fuel economy. First, the FCS model is built according to experiment data, and in order to reflect the affection of the temperature to the proposed control strategy, the thermal model of the battery is established. Then the future power requirement is predicted via Bayes inference analysis. Based on the FCS model, the battery model, and the predicted power requirement, the real‐time control strategy is designed and solved with minimization principle optimization over the receding horizon. The proposed control strategy is validated both through simulation and hardware‐in‐loop (Hil) experiments on a 40 kW FCS. The results compared with the rule‐based (RB) strategy and the loss minimum strategy (LMS) show that the proposed control strategy can effectively reduce fuel consumption by 4%, and at the same time, it can help extend the life span of the battery by considering the temperature affection.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"5 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin He, Ziang Xu, Yujiang Wei, Mingwei Wang, Chunrong Huang, Qin Shi
{"title":"A tune sliding control algorithm for angle following of electric motor steer-by-wire system","authors":"Lin He, Ziang Xu, Yujiang Wei, Mingwei Wang, Chunrong Huang, Qin Shi","doi":"10.1002/asjc.3487","DOIUrl":"https://doi.org/10.1002/asjc.3487","url":null,"abstract":"The sliding mode control has to design a sliding manifold for manipulating the system motion in engineering practice, making system asymptotic stability paramount. This is particularly challenging for using variable sliding manifold parameters to formulate the sliding manifold for fast convergence and precise control. While much of the research on sliding mode control has focused on constant sliding manifold parameters, comparatively little is known about the variable approach of the sliding manifold parameters. Therefore, sliding manifold parameters are treated as variables and are computed by a parameter tuning algorithm. Regarding the parameter tuning algorithm, its input is the sliding mode control law with variable sliding manifold parameters, and its output is the computed sliding manifold parameters that will be transmitted back to the sliding mode control law. Through tuning the sliding manifold parameters by an optimal method of lowest cost with the measuring value and model computing value of system states based on the historical information, the difference between the nominal model and the real system will be removed. Here we discuss a series of studies on the algorithm of tune sliding control that, collectively, develop an application of how the tune sliding controller steers the front wheels of the full self-driving vehicle. The designed approach has been tested in a steering test vehicle to realize a good angle tracking performance of the electric motor steer-by-wire system.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recursive set-membership filtering for two-dimensional shift-varying systems with FlexRay protocol and hybrid cyber attacks","authors":"Pan Zhang, Chaoqun Zhu, Zhiwen Wang, Bin Yang","doi":"10.1002/asjc.3478","DOIUrl":"https://doi.org/10.1002/asjc.3478","url":null,"abstract":"The problem of recursive set-membership filter design for two-dimensional (2-D) systems subject to FlexRay communication protocol and hybrid cyber attacks (HCAs) is investigated in this article. The FlexRay protocol that integrates time-triggered and event-triggered mechanisms and involves a series of pre-defined communication cycles based on bidirectional metrics is developed to alleviate the network bandwidth load. Furthermore, the envisioned system is exposed to false data injection and denial-of-service attacks that occur in a randomized manner. Subsequently, the dynamic filtering error system (FES) subject to bidirectional evolutionary HCAs and FlexRay scheduling protocol is constructed. Then, sufficient conditions are obtained such that the dynamic FES consistently resides within an ellipsoidal set by utilizing double mathematical induction and recursive linear matrix inequalities (RLMIs). Moreover, the optimal filtering algorithm is given by minimizing the ellipsoidal constraints from the perspective of the traces of the matrix. The effectiveness of the presented recursive set-membership filter design approach is validated by a long-distance transmission line example.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"20 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}