China Foundry最新文献

筛选
英文 中文
Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel 热处理对含ti低合金马氏体耐磨钢组织和力学性能的影响
3区 材料科学
China Foundry Pub Date : 2023-07-01 DOI: 10.1007/s41230-023-3023-4
Kai Lan, Wang Ding, Yi-tao Yang
{"title":"Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel","authors":"Kai Lan, Wang Ding, Yi-tao Yang","doi":"10.1007/s41230-023-3023-4","DOIUrl":"https://doi.org/10.1007/s41230-023-3023-4","url":null,"abstract":"Effects of quenching temperature and cooling conditions (water cooling and 10% NaCl cooling) on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated. The results show that lath martensite can be obtained after austenitizing in the range of 860–980 °C and then water cooling. With an increase in austenitizing temperature, the precipitate content gradually decreases. The precipitates are mainly composed of TiC and Ti4C2S2, and their total content is between 1.15wt.% and 1.64wt.%. The precipitate phase concentration by water-cooling is higher than that by 10% NaCl cooling due to the lower cooling rate of water cooling. As the austeniting temperature increases, the hardness and tensile strength of both water cooled and 10% NaCl cooled steels firstly increase and then decrease. The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900 °C, cooled by 10% NaCl, and then tempered at 200 °C. Its hardness, ultimate tensile strength, and wear rate reach 551.4 HBW, 1,438.2 MPa, and 0.48×10−2 mg·m−1, respectively.","PeriodicalId":55261,"journal":{"name":"China Foundry","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135711463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信