Integral Transforms and Special Functions最新文献

筛选
英文 中文
On some series of special functions 关于一系列特殊函数
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-07-04 DOI: 10.1080/10652469.2024.2363791
Yu. A. Brychkov
{"title":"On some series of special functions","authors":"Yu. A. Brychkov","doi":"10.1080/10652469.2024.2363791","DOIUrl":"https://doi.org/10.1080/10652469.2024.2363791","url":null,"abstract":"Series of the form ∑k=0∞∏i=1p(ai)k∏j=1q(bj)kwkFk(z) are considered, where Fk(z) are special functions of hypergeometric type. Various types of series involving Bessel, Struve, incomplete gamma func...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"368 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141573461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized fractional Stockwell transform and its associated pseudo-differential operator 广义分数斯托克韦尔变换及其相关伪微分算子
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-07-04 DOI: 10.1080/10652469.2024.2371445
M. Thanga Rejini
{"title":"Generalized fractional Stockwell transform and its associated pseudo-differential operator","authors":"M. Thanga Rejini","doi":"10.1080/10652469.2024.2371445","DOIUrl":"https://doi.org/10.1080/10652469.2024.2371445","url":null,"abstract":"The novel fractional Stockwell transform is extended to the suitably defined Schwartz space and the generalized fractional Stockwell transform is introduced. The pseudo-differential operator associ...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"175 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141573460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebraic properties of Mehler–Fock convolution and applications Mehler-Fock 卷积的代数特性及其应用
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-07-02 DOI: 10.1080/10652469.2024.2371446
Pham Van Hoang, Nguyen Thanh Hong, Le Xuan Huy, Nguyen Hong Van
{"title":"Algebraic properties of Mehler–Fock convolution and applications","authors":"Pham Van Hoang, Nguyen Thanh Hong, Le Xuan Huy, Nguyen Hong Van","doi":"10.1080/10652469.2024.2371446","DOIUrl":"https://doi.org/10.1080/10652469.2024.2371446","url":null,"abstract":"In this paper, we study some properties of the Mehler–Fock convolution operator. We also analyse the Banach algebraic structure on the space of integrable functions L1(1,∞) with the multiplication ...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"23 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet convolutors on the space of distributions 分布空间上的小波卷积器
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-06-29 DOI: 10.1080/10652469.2024.2370053
Abhishek Singh, Nikhila Raghuthaman
{"title":"Wavelet convolutors on the space of distributions","authors":"Abhishek Singh, Nikhila Raghuthaman","doi":"10.1080/10652469.2024.2370053","DOIUrl":"https://doi.org/10.1080/10652469.2024.2370053","url":null,"abstract":"The present paper investigates the wavelet convolutors on the distribution space Gα,β. Through a suitable choice of the convolutive dual, we have characterized Gα,β as a space of convolutors. Furth...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141573462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalizations of the Jacobi identity to the case of the Lauricella function FD(N) 雅可比特性在劳里切拉函数 FD(N) 情况下的一般化
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-05-12 DOI: 10.1080/10652469.2024.2351396
S. I. Bezrodnykh
{"title":"Generalizations of the Jacobi identity to the case of the Lauricella function FD(N)","authors":"S. I. Bezrodnykh","doi":"10.1080/10652469.2024.2351396","DOIUrl":"https://doi.org/10.1080/10652469.2024.2351396","url":null,"abstract":"The paper considers the issue of constructing differential relations for the Lauricella hypergeometric function FD(N). The formulas found give explicit expressions for the derivative of the product...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"138 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sufficient conditions for the Lebesgue integrability of Mellin transforms 梅林变换的勒贝格可积分性的充分条件
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-05-09 DOI: 10.1080/10652469.2024.2351382
Othman Tyr
{"title":"Sufficient conditions for the Lebesgue integrability of Mellin transforms","authors":"Othman Tyr","doi":"10.1080/10652469.2024.2351382","DOIUrl":"https://doi.org/10.1080/10652469.2024.2351382","url":null,"abstract":"This work is devoted to the study of the integrability of Mellin transforms under some sufficient and necessary conditions in the space Xcp of Lebesgue measurable functions f on R+=(0,+∞) such that...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"28 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trigonometric weighted generalized convolution operator associated with Fourier cosine–sine and Kontorovich–Lebedev transformations 与傅立叶余弦正弦变换和 Kontorovich-Lebedev 变换相关的三角加权广义卷积算子
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-04-11 DOI: 10.1080/10652469.2024.2341400
Trinh Tuan, Nguyen Thanh Hong
{"title":"Trigonometric weighted generalized convolution operator associated with Fourier cosine–sine and Kontorovich–Lebedev transformations","authors":"Trinh Tuan, Nguyen Thanh Hong","doi":"10.1080/10652469.2024.2341400","DOIUrl":"https://doi.org/10.1080/10652469.2024.2341400","url":null,"abstract":"The main objective of this work is to introduce the generalized convolution with trigonometric weighted γ=sin⁡y involving the Fourier cosine–sine and Kontorovich–Lebedev transforms, and to study it...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some expansion formulas for Brenke polynomial sets 布伦克多项式集的一些展开公式
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-03-26 DOI: 10.1080/10652469.2024.2334056
H. Chaggara, A. Gahami, N. Ben Romdhane
{"title":"Some expansion formulas for Brenke polynomial sets","authors":"H. Chaggara, A. Gahami, N. Ben Romdhane","doi":"10.1080/10652469.2024.2334056","DOIUrl":"https://doi.org/10.1080/10652469.2024.2334056","url":null,"abstract":"In this paper, using operational rules, we derive some explicit expansion formulas associated with Brenke type polynomials. In particular, the corresponding connection and linearization coefficient...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"12 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Fourier transforms involving confluent hypergeometric functions 涉及汇合超几何函数的一些傅立叶变换
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-03-24 DOI: 10.1080/10652469.2024.2325429
Nimete Sh. Berisha, Faton M. Berisha, Bujar Xh. Fejzullahu
{"title":"Some Fourier transforms involving confluent hypergeometric functions","authors":"Nimete Sh. Berisha, Faton M. Berisha, Bujar Xh. Fejzullahu","doi":"10.1080/10652469.2024.2325429","DOIUrl":"https://doi.org/10.1080/10652469.2024.2325429","url":null,"abstract":"In this paper, we derive some Fourier transforms of confluent hypergeometric functions. We give generalizations of several well-known results involving Fourier transforms of gamma functions. In par...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"12 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial sequences associated with the fractional Pascal measure 与分数帕斯卡测量相关的多项式序列
IF 1 3区 数学
Integral Transforms and Special Functions Pub Date : 2024-03-18 DOI: 10.1080/10652469.2024.2328105
Muqrin A. Almuqrin, Anis Riahi, Hafedh Rguigui
{"title":"Polynomial sequences associated with the fractional Pascal measure","authors":"Muqrin A. Almuqrin, Anis Riahi, Hafedh Rguigui","doi":"10.1080/10652469.2024.2328105","DOIUrl":"https://doi.org/10.1080/10652469.2024.2328105","url":null,"abstract":"Using a biorthogonal technique (Appell system), the foremost aim of this study is to develop and highlight specific aspects of a new polynomial sequence known as Fractional Krawtchouk Appell polyno...","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"20 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140173160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信