Ashir Javeed, Johan Sanmartin Berglund, A. Dallora, Muhammad Asim Saleem, P. Anderberg
{"title":"Predictive Power of XGBoost_BiLSTM Model: A Machine-Learning Approach for Accurate Sleep Apnea Detection Using Electronic Health Data","authors":"Ashir Javeed, Johan Sanmartin Berglund, A. Dallora, Muhammad Asim Saleem, P. Anderberg","doi":"10.1007/s44196-023-00362-y","DOIUrl":"https://doi.org/10.1007/s44196-023-00362-y","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"29 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139229474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on the Prediction of Tire Radial Load Based on 1D CNN and BiGRU","authors":"Yuanjin Ji, Junwei Zeng, L. Ren","doi":"10.1007/s44196-023-00357-9","DOIUrl":"https://doi.org/10.1007/s44196-023-00357-9","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"44 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139257827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Ashmawy, Mohamed Waleed Fakhr, Fahima A. Maghraby
{"title":"Lexical Normalization Using Generative Transformer Model (LN-GTM)","authors":"Mohamed Ashmawy, Mohamed Waleed Fakhr, Fahima A. Maghraby","doi":"10.1007/s44196-023-00366-8","DOIUrl":"https://doi.org/10.1007/s44196-023-00366-8","url":null,"abstract":"Abstract Lexical Normalization (LN) aims to normalize a nonstandard text to a standard text. This problem is of extreme importance in natural language processing (NLP) when applying existing trained models to user-generated text on social media. Users of social media tend to use non-standard language. They heavily use abbreviations, phonetic substitutions, and colloquial language. Nevertheless, most existing NLP-based systems are often designed with the standard language in mind. However, they suffer from significant performance drops due to the many out-of-vocabulary words found in social media text. In this paper, we present a new (LN) technique by utilizing a transformer-based sequence-to-sequence (Seq2Seq) to build a multilingual characters-to-words machine translation model. Unlike the majority of current methods, the proposed model is capable of recognizing and generating previously unseen words. Also, it greatly reduces the difficulties involved in tokenizing and preprocessing the nonstandard text input and the standard text output. The proposed model outperforms the winning entry to the Multilingual Lexical Normalization (MultiLexNorm) shared task at W-NUT 2021 on both intrinsic and extrinsic evaluations.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"43 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134953414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Huang, Guangpeng Zhang, Li juan Ren, Nina Wang
{"title":"A New Image Segmentation Method Based on the YOLO5 and Fully Connected CRF","authors":"Jian Huang, Guangpeng Zhang, Li juan Ren, Nina Wang","doi":"10.1007/s44196-023-00365-9","DOIUrl":"https://doi.org/10.1007/s44196-023-00365-9","url":null,"abstract":"Abstract When manually polishing blades, skilled workers can quickly machine a blade by observing the characteristics of the polishing sparks. To help workers better recognize spark images, we used an industrial charge-coupled device (CCD) camera to capture the spark images. Firstly, the spark image region detected by yolo5, then segment from the background. Secondly, the target region was further segmented and refined in a fully connected conditional random field (CRF), from which the complete spark image obtained. Experimental results showed that this method could quickly and accurately segment whole spark image. The test results showed that this method was better than other image segmentation algorithms. Our method could better segment irregular image, improve recognition and segmentation efficiency of spark image, achieve automatic image segmentation, and replace human observation.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"43 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134953419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}