Lorraine Amponsah, Christopher Chuck, Sophie Parsons
{"title":"Life cycle assessment of a marine biorefinery producing protein, bioactives and polymeric packaging material","authors":"Lorraine Amponsah, Christopher Chuck, Sophie Parsons","doi":"10.1007/s11367-023-02239-w","DOIUrl":"https://doi.org/10.1007/s11367-023-02239-w","url":null,"abstract":"Abstract Purpose Algal research has been dominated by the use of marine biomass (mainly microalgae) as feedstock in the production of second-generation biofuels, albeit with limited economic success. A promising alternative strategy is the valorisation of seaweed (macroalgae), with the cascaded extraction of its high-value components, as well as lower-value components further downstream, under the ‘biorefinery concept’. The goal of this study was to assess the environmental performance of one such marine biorefinery situated in the UK. Methods Attributional life cycle assessment (LCA) was conducted on a hypothetical marine biorefinery coproducing fucoidan, laminarin, protein and alginate/cellulose packaging material (target product), from cultivated Saccharina latissima . The functional unit was the production of 1 kg of packaging material. A total of 6 scenarios were modelled, varying in coproduct management methodology (system expansion, mass allocation or economic allocation) and applied energy mix (standard or green energy). Sensitivity analysis was also conducted, evaluating the systems response to changes in allocation methodology; product market value; biomass composition and transport mode and distance. LCA calculations were performed using OpenLCA (version 1.10.3) software, with background processes modelled using the imported Ecoinvent 3.6 database. Environmental impacts were quantified under ReCiPe methodology at the midpoint level, from the ‘Heirarchist’ (H) perspective. Results and discussion The overall global warming impacts ranged from 1.2 to 4.52 kg CO 2 eq/kg biopolymer, with the application of economic allocation; 3.58 to 7.06 kg CO 2 eq/kg with mass allocation and 14.19 to 41.52 kg CO 2 eq/kg with system expansion — the lower limit representing the instance where green electricity is used and the upper where standard electricity is employed. While implementing the green energy mix resulted in a 67% reduction in global warming impacts, it also incurred a 2–9 fold increase in overall impacts in the categories of terrestrial acidification, human non-carcinogenic toxicity, land-use and terrestrial ecotoxicity. Economic allocation resulted in burden shifting most favourable to the packaging material pathway. Conclusions This study demonstrates that the road to environmental optimisation in marine biorefineries is fraught with trade-offs. From the perspective of LCA — and by extension, the eco-design process that LCA is used to inform — when evaluating such product systems, it serves to strike a balance between performance across a broad spectrum of environmental impact categories, along with having consideration for the nature of energy systems incorporated and LCA methodological elements. Graphical Abstract","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135995140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regional management options for floating marine litter in coastal waters from a life cycle assessment perspective","authors":"Rose Nangah Mankaa, Marzia Traverso","doi":"10.1007/s11367-023-02236-z","DOIUrl":"https://doi.org/10.1007/s11367-023-02236-z","url":null,"abstract":"Abstract Purpose Despite the increasing number of publications focusing on the management of marine plastic debris, most research is carried out using an upstream perspective, focused on sources and pathways of marine litter accumulation, as well as actions to prevent plastics from entering the environment. The aim of this paper is therefore to investigate a combination of waste management technologies for marine litter in order to inform decision-making on environmental impact hotspots at regional level. Method A study of the North Sea German Bight identified existing technologies suitable for the collection and treatment of floating marine debris including, recycling of plastics, mechanical biological treatment (MBT), and landfilling. Processing data for reported marine litter compositions in the region are used to inform the modelling of a waste management strategic plan (WMSP) aimed at valorising various fractions. Hence, collected floating marine litter is separated into derelict fishing gear (DFG) and mixed marine litter (MML) which are sent respectively to a recycling plant for plastic granulates production and to an MBT plant for recovery of metals and electricity generation. Environmental impacts of the WMSP are evaluated using the Life Cycle Assessment methodology and compared with incineration considered as the prevalent waste scenario. Results and discussion As partly expected, the LCA results reveal higher environmental performance in all impact categories for the incineration scenario. In particular, the WMSP contributes to Global Warming Potential (GWP) more than 10 orders of magnitude less than the incineration scenario. However, the breakdown of results related to the WMSP indicates the highest contribution to environmental impacts attributed to electricity and heat generation from refused-derived fuel and emissions at the combined heat and power plant, as well as electricity and diesel consumption. Lowest contributions are attributed to the recycling plant. The sensitivity analysis revealed low contributions to GWP if plastic debris such as DFG is diverted to recycling while toxicity-related categories are improved by efficient metal and energy recovery at the MBT plant. Conclusion Findings of this study show that no single treatment method is enough rather a combination of different treatment pathways should be designed considering the composition and properties of accumulated marine litter in a specific area. However, recovering plastic litter and diverting useful materials from waste-to-energy to recycling improve the environmental performance. Reviews suggest inclusion of valorisation treatment options in future WMSPs of marine litter such as plastic-to-fuel technologies.","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the environmental performance of mezcal production in Michoacán, México: A life cycle assessment approach","authors":"César Ruiz-Camou, José Núñez, Ricardo Musule","doi":"10.1007/s11367-023-02237-y","DOIUrl":"https://doi.org/10.1007/s11367-023-02237-y","url":null,"abstract":"Abstract Purpose The purpose of this work is to evaluate the environmental impacts of mezcal production from Agave cupreata in Michoacán, México. The central question is the influence of management options for vinasse, bagasse, and biomass energy. Methods The study was conducted using life cycle assessment (LCA) based on the conceptual framework of ISO 14040, guidelines of ISO 14044, and material and energy flow analysis, in a cradle-to-gate approach. The functional unit considered is a packaged mezcal of 0.75 ls produced in compliance with the official Mexican standard for this type of alcoholic beverage. Site measurements were conducted at two agave processing facilities, and descriptive surveys were carried out in collaboration with local producers. Related ecoefficiency indicators were evaluated and shown in a transparent and reproducible way. Environmental impact categories such as global warming potential (GWP), fine particulate matter formation (PMFP), freshwater eutrophication (FEP), and cumulative energy demand (CED) were calculated. Results The results indicate that bioenergy is 87% of the cumulative energy for production. The main source of impacts from the PMFP category was the distillation process (50%). The vinasse contribution is around 60.4% for the FEP category. Bagasse’s contribution to the GWP category is around 22.7%. Even though carbon dioxide produced from biomass is considered biogenic, the overall impact is still significant due to the presence of other compounds such as methane. We also evaluate barriers to the implementation of alternative waste management technologies for bagasse and vinasse. Conclusions From this study, it is concluded that biomass energy plays a crucial role in the sustainable manufacturing of mezcal.","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135252285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environmental assessment of hard coal char as a carbon reductant for silicon alloys production","authors":"Przemysław A. Knigawka, Grzegorz J. Ganczewski","doi":"10.1007/s11367-023-02233-2","DOIUrl":"https://doi.org/10.1007/s11367-023-02233-2","url":null,"abstract":"","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Venla Kyttä, Anna Kårlund, Tiina Pellinen, Hanna L. Tuomisto, Marjukka Kolehmainen, Anne-Maria Pajari, Merja Saarinen
{"title":"Extending the product-group-specific approach in nutritional life cycle assessment","authors":"Venla Kyttä, Anna Kårlund, Tiina Pellinen, Hanna L. Tuomisto, Marjukka Kolehmainen, Anne-Maria Pajari, Merja Saarinen","doi":"10.1007/s11367-023-02235-0","DOIUrl":"https://doi.org/10.1007/s11367-023-02235-0","url":null,"abstract":"Abstract Purpose Recent methodological developments have integrated nutritional aspects into life cycle assessment (LCA) by using nutrient indices as functional units (nFUs). Previous developments have focused on protein-rich foods, but environmental impacts and nutritional composition vary across products in other product groups, highlighting the need to develop nFUs also for other product groups. Here, we present product-group-specific nFUs for vegetables, fruit and berries, and sources of carbohydrates as an extension to our previous study on protein sources. Methods We first justified the basis of product grouping and the procedure to develop product-group-specific nutrient indices to be used as the nFU in the LCA for product groups of vegetables, fruit and berries, and sources of carbohydrates. The practical application of these indices was then tested through demonstrative LCAs for the selection of different foods. The performance and results obtained with product-group-specific nFUs, including previously developed nFU for protein sources, were evaluated through a comparison with an assessment done using a general index, which included all the nutrients with the recommended daily intake in Finnish nutrition recommendations. Results and discussion The results showed that the product-group-specific nFUs resulted in index scores that were an average of 2.5 times higher, and therefore lower climate impacts per nFU for the assessed food products, than the general index. This demonstrated that product-group-specific nFUs accurately represented the relevant nutrients for the studied product group and provided specific information on the impact of substituting currently consumed foods. The relative results obtained with either product-group-specific indices or a general index were similar except in the protein source product group, showing that a product-group-specific nFU might favour a certain type of products, such as traditional protein source foods, when applied to a very heterogenous group of products. Conclusions This study showed that the product-group-specific approach could provide valuable information when evaluating the sustainability of different meal components. The approach presented here can be adapted elsewhere and revised for different populations. However, future research is needed to extend the method to cover other product groups as well and validate the selection of nutrients in the nFUs.","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136279769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Blenkley, J. Suckling, S. Morse, R. Murphy, M. Raats, S. Astley, J. C. G. Halford, J. A. Harrold, A. Le-Bail, E. Koukouna, H. Musinovic, A. Raben, M. Roe, J. Scholten, C. Scott, C. Westbroek
{"title":"Environmental life cycle assessment of production of the non-nutritive sweetener sucralose (E955) derived from cane sugar produced in the United States of America: The SWEET project","authors":"E. Blenkley, J. Suckling, S. Morse, R. Murphy, M. Raats, S. Astley, J. C. G. Halford, J. A. Harrold, A. Le-Bail, E. Koukouna, H. Musinovic, A. Raben, M. Roe, J. Scholten, C. Scott, C. Westbroek","doi":"10.1007/s11367-023-02228-z","DOIUrl":"https://doi.org/10.1007/s11367-023-02228-z","url":null,"abstract":"Abstract Purpose There is increasing concern about the detrimental health effects of added sugar in food and drink products. Sweeteners are seen as a viable alternative. Much work has been done on health and safety of using sweeteners as a replacement for added sugar, but very little on their sustainability. This work aims to bridge that gap with a life cycle assessment (LCA) of sucralose derived from cane sugar grown in the United States of America (USA). Methods An attributional, cradle-to-gate LCA was conducted on sucralose production in the USA. Primary data were derived from literature for the chlorination process, and all other data from background sources. Results are reported via the ReCiPe 2016 (H) method, with focus given to land use, global warming potential (GWP), marine eutrophication, mineral resource scarcity, and water consumption. Because sucralose has a much greater perceived sweetness than sugar, impacts are expressed both in absolute terms of 1 kg mass and in relative sweetness equivalence terms to 1 kg sugar. Scenario modelling explores the sensitivity of the LCA results to change in key parameters. This research was conducted as part of the EU Horizon 2020 project SWEET (Sweeteners and sweetness enhancers: Impact on health, obesity, safety and sustainability). Results and discussion GWP for 1 kg sucralose was calculated to be 71.83 kgCO 2 -eq/kg (sugar from sugarcane is 0.77 kgCO 2 -eq/kg). However, on a sweetness equivalence basis, GWP of sucralose reduces to 0.12 kgCO 2 -eq/kg SE . Production of reagents was the main contributor to impact across most impact categories. Sugar (starting material for sucralose production) was not a majority contributor to any impact category, and changing the source of sugar has little effect upon net impact (average 2.0% variation). Instead, uncertainty in reference data is a greater source of variability: reagent use optimization reduces average impact of sucralose production by approximately 45.4%. In general, sucralose has reduced impact compared to sugar on an equivalent sweetness basis, however, due to data uncertainty, the reduction is not significant for all impact categories. Conclusion This LCA is the first for sucralose produced from cane sugar produced in the USA. Results indicate that sucralose has the potential to reduce the environmental impact of replacing the sweet taste of sugar. However, data were derived from literature and future collaboration with industry would help in reducing identified uncertainties. Accounting for functional use of sucralose in food and drink formulations is also necessary to fully understand the entire life cycle impact.","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135580037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Life cycle assessment of leather treatment at various scales: comparison between chrome and vegetable processes","authors":"Mariana Oliveira, Amalia Zucaro, Renato Passaro, Sergio Ulgiati","doi":"10.1007/s11367-023-02232-3","DOIUrl":"https://doi.org/10.1007/s11367-023-02232-3","url":null,"abstract":"","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of developing and emerging economies in sustainable food systems","authors":"Ian Vázquez-Rowe, Ulrike Eberle, Sergiy Smetana","doi":"10.1007/s11367-023-02234-1","DOIUrl":"https://doi.org/10.1007/s11367-023-02234-1","url":null,"abstract":"","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136308761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maziar Ramezani Moziraji, Ghorban Ali Dezvareh, Majid Ehteshami, Mohammad Reza Sabour, Alireza Bazargan
{"title":"Life cycle assessment of gas-based EAF steel production: environmental impacts and strategies for footprint reduction","authors":"Maziar Ramezani Moziraji, Ghorban Ali Dezvareh, Majid Ehteshami, Mohammad Reza Sabour, Alireza Bazargan","doi":"10.1007/s11367-023-02230-5","DOIUrl":"https://doi.org/10.1007/s11367-023-02230-5","url":null,"abstract":"","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle Savian, Carla da Penha Simon, Nicholas M. Holden
{"title":"Evaluating environmental, economic, and social aspects of an intensive pig production farm in the south of Brazil: a case study","authors":"Michelle Savian, Carla da Penha Simon, Nicholas M. Holden","doi":"10.1007/s11367-023-02223-4","DOIUrl":"https://doi.org/10.1007/s11367-023-02223-4","url":null,"abstract":"Abstract Purpose The objective of this work was to quantify and understand the impacts of intensive pig production at family-farm level. A case study from the west of Santa Catarina State was used to identify adverse issues (hotspots) of pig production by integrating the assessment of the environmental, economic, and social aspects of the system. The quantitative and qualitative indicators calculated can guide and support the decision-making processes for a variety of stakeholders and actors. Methods The environmental performance of the pig production system was assessed from cradle-to-farm gate using environmental Life Cycle Assessment methodology set out in ISO 14040 (ISO 2006a). The functional unit (FU) was 1 kg of Liveweight (kg-LW). The structure of the Life Cycle Sustainability Assessment (LCSA) was based on Neugebauer et al. (J Clean Prod 102:165–176, 2015) and Chen and Holden (J Clean Prod 172:1169–1179, 2018), who proposed a tiered framework to evaluate the impacts on the environmental, social, and financial aspects of a product. The economic dimension or Life Cycle Cost (Hunkeler et al. in Environmental life cycle costing. Crc Press, London, 2008) focused on farm-level activities. The social impact was calculated based on the UNEP/SETAC (2009) guidelines. Results and discussion The environmental performance of the finishing pig production was slightly lower than reference value for climate impacts, acidification, and eutrophication. The economic impacts tended to be positive, reflecting the efforts of the farmer and employee to maintain high productivity and reduce the number of pig losses in comparison with the reference values. However, this effort did not result in greater profitability, causing low farm income. The impacts of low profitability were not transferred to the employee since the wage were above the reference value. There is a need for more education for small farmers, which is known to have a positive correlation with the adoption of new technologies, thus reducing adverse environmental and social impacts and increasing economic return. Conclusions The interaction of social and economic factors suggests it is unlikely that the farm can achieve better environmental performance. The limited economic return and low level of education have a negative impact on the farmer’s capacity to adopt new technologies to improve environmental outcomes. The use of LCSA, based on a consistent model across the three aspects of sustainability, made it possible to understand the interaction of these factors.","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135488163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}