S. Rahman, Alberto Quattrini Li, Ioannis M. Rekleitis
{"title":"SVIn2: A multi-sensor fusion-based underwater SLAM system","authors":"S. Rahman, Alberto Quattrini Li, Ioannis M. Rekleitis","doi":"10.1177/02783649221110259","DOIUrl":"https://doi.org/10.1177/02783649221110259","url":null,"abstract":"This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"1022 - 1042"},"PeriodicalIF":9.2,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49431313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bayesian iterative closest point for mobile robot localization","authors":"F. A. Maken, Fabio Ramos, Lionel Ott","doi":"10.1177/02783649221101417","DOIUrl":"https://doi.org/10.1177/02783649221101417","url":null,"abstract":"Accurate localization of a robot in a known environment is a fundamental capability for successfully performing path planning, manipulation, and grasping tasks. Particle filters, also known as Monte Carlo localization (MCL), are a commonly used method to determine the robot’s pose within its environment. For ground robots, noisy wheel odometry readings are typically used as a motion model to predict the vehicle’s location. Such a motion model requires tuning of various parameters based on terrain and robot type. However, such an ego-motion estimation is not always available for all platforms. Scan matching using the iterative closest point (ICP) algorithm is a popular alternative approach, providing ego-motion estimates for localization. Iterative closest point computes a point estimate of the transformation between two poses given point clouds captured at these locations. Being a point estimate method, ICP does not deal with the uncertainties in the scan alignment process, which may arise due to sensor noise, partial overlap, or the existence of multiple solutions. Another challenge for ICP is the high computational cost required to align two large point clouds, limiting its applicability to less dynamic problems. In this paper, we address these challenges by leveraging recent advances in probabilistic inference. Specifically, we first address the run-time issue and propose SGD-ICP, which employs stochastic gradient descent (SGD) to solve the optimization problem of ICP. Next, we leverage SGD-ICP to obtain a distribution over transformations and propose a Markov Chain Monte Carlo method using stochastic gradient Langevin dynamics (SGLD) updates. Our ICP variant, termed Bayesian-ICP, is a full Bayesian solution to the problem. To demonstrate the benefits of Bayesian-ICP for mobile robotic applications, we propose an adaptive motion model employing Bayesian-ICP to produce proposal distributions for Monte Carlo Localization. Experiments using both Kinect and 3D LiDAR data show that our proposed SGD-ICP method achieves the same solution quality as standard ICP while being significantly more efficient. We then demonstrate empirically that Bayesian-ICP can produce accurate distributions over pose transformations and is fast enough for online applications. Finally, using Bayesian-ICP as a motion model alleviates the need to tune the motion model parameters from odometry, resulting in better-calibrated localization uncertainty.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"851 - 874"},"PeriodicalIF":9.2,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47404287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On-manifold probabilistic Iterative Closest Point: Application to underwater karst exploration","authors":"Yohan Breux, André Mas, L. Lapierre","doi":"10.1177/02783649221101418","DOIUrl":"https://doi.org/10.1177/02783649221101418","url":null,"abstract":"This paper proposes MpIC, an on-manifold derivation of the probabilistic Iterative Correspondence (pIC) algorithm, which is a stochastic version of the original Iterative Closest Point. It is developed in the context of autonomous underwater karst exploration based on acoustic sonars. First, a derivation of pIC based on the Lie group structure of S E ( 3 ) is developed. The closed-form expression of the covariance modeling the estimated rigid transformation is also provided. In a second part, its application to 3D scan matching between acoustic sonar measurements is proposed. It is a prolongation of previous work on elevation angle estimation from wide-beam acoustic sonar. While the pIC approach proposed is intended to be a key component in a Simultaneous Localization and Mapping framework, this paper focuses on assessing its viability on a unitary basis. As ground truth data in karst aquifer are difficult to obtain, quantitative experiments are carried out on a simulated karst environment and show improvement compared to previous state-of-the-art approach. The algorithm is also evaluated on a real underwater cave dataset demonstrating its practical applicability.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"875 - 902"},"PeriodicalIF":9.2,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46134041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid sparse monocular visual odometry with online photometric calibration","authors":"Dongting Luo, Zhuang Yan, Sen Wang","doi":"10.1177/02783649221107703","DOIUrl":"https://doi.org/10.1177/02783649221107703","url":null,"abstract":"Most monocular visual Simultaneous Localization and Mapping (vSLAM) and visual odometry (VO) algorithms focus on either feature-based methods or direct methods. Hybrid (semi-direct) approach is less studied although it is equally important. In this paper, a hybrid sparse visual odometry (HSO) algorithm with online photometric calibration is proposed for monocular vision. HSO introduces two novel measures, that is, direct image alignment with adaptive mode selection and image photometric description using ratio factors, to enhance the robustness against dramatic image intensity changes and motion blur. Moreover, HSO is able to establish pose constraints between keyframes far apart in time and space by using KLT tracking enhanced with a local-global brightness consistency. The convergence speed of candidate map points is adopted as the basis for keyframe selection, which strengthens the coordination between the front end and the back end. Photometric calibration is elegantly integrated into the VO system working in tandem: (1) Photometric interference from the camera, such as vignetting and changes in exposure time, is accurately calibrated and compensated in HSO, thereby improving the accuracy and robustness of VO. (2) On the other hand, VO provides pre-calculated data for the photometric calibration algorithm, which reduces resource consumption and improves the estimation accuracy of photometric parameters. Extensive experiments are performed on various public datasets to evaluate the proposed HSO against the state-of-the-art monocular vSLAM/VO and online photometric calibration methods. The results show that the proposed HSO achieves superior performance on VO and photometric calibration in terms of accuracy, robustness, and efficiency, being comparable with the state-of-the-art VO/vSLAM systems. We open source HSO for the benefit of the community.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"993 - 1021"},"PeriodicalIF":9.2,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46160927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple kinesthetic haptics for object recognition","authors":"A. Sintov, Inbar Meir","doi":"10.1177/02783649231182486","DOIUrl":"https://doi.org/10.1177/02783649231182486","url":null,"abstract":"Object recognition is an essential capability when performing various tasks. Humans naturally use either or both visual and tactile perception to extract object class and properties. Typical approaches for robots, however, require complex visual systems or multiple high-density tactile sensors which can be highly expensive. In addition, they usually require actual collection of a large dataset from real objects through direct interaction. In this paper, we propose a kinesthetic-based object recognition method that can be performed with any multi-fingered robotic hand in which the kinematics is known. The method does not require tactile sensors and is based on observing grasps of the objects. We utilize a unique and frame invariant parameterization of grasps to learn instances of object shapes. To train a classifier, training data is generated rapidly and solely in a computational process without interaction with real objects. We then propose and compare between two iterative algorithms that can integrate any trained classifier. The classifiers and algorithms are independent of any particular robot hand and, therefore, can be exerted on various ones. We show in experiments, that with few grasps, the algorithms acquire accurate classification. Furthermore, we show that the object recognition approach is scalable to objects of various sizes. Similarly, a global classifier is trained to identify general geometries (e.g., an ellipsoid or a box) rather than particular ones and demonstrated on a large set of objects. Full scale experiments and analysis are provided to show the performance of the method.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"537 - 561"},"PeriodicalIF":9.2,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46266435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Receding horizon navigation and target tracking for aerial detection of transient radioactivity","authors":"Indrajeet Yadav, M. Sebok, H. Tanner","doi":"10.1177/02783649231169803","DOIUrl":"https://doi.org/10.1177/02783649231169803","url":null,"abstract":"The paper presents a receding horizon planning and control strategy for quadrotor-type micro aerial vehicle (mav)s to navigate reactively and intercept a moving target in a cluttered unknown and dynamic environment. Leveraging a lightweight short-range sensor that generates a point-cloud within a relatively narrow and short field of view (fov), and an ssd-MobileNet based Deep neural network running on board the mav, the proposed motion planning and control strategy produces safe and dynamically feasible mav trajectories within the sensor fov, which the vehicle uses to autonomously navigate, pursue, and intercept its moving target. This task is completed without reliance on a global planner or prior information about the environment or the moving target. The effectiveness of the reported planner is demonstrated numerically and experimentally in cluttered indoor and outdoor environments featuring maximum speeds of up to 4.5–5 m/s.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"66 - 82"},"PeriodicalIF":9.2,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46019536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Before, During, and After of Multi-robot Deadlock","authors":"J. Grover, Changliu Liu, K. Sycara","doi":"10.1177/02783649221074718","DOIUrl":"https://doi.org/10.1177/02783649221074718","url":null,"abstract":"Collision avoidance for multi-robot systems is a well-studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to deadlock, an equilibrium of system dynamics that causes the robots to stall before reaching their goals. In this paper, we analyze the closed-loop dynamics of robots using CBFs, to characterize controller parameters, initial conditions, and goal locations that invariably lead the system to deadlock. Using tools from duality theory, we derive geometric properties of robot configurations of an N robot system once it is in deadlock and we justify them using the mechanics interpretation of KKT conditions. Our key deductions are that (1) system deadlock is characterized by a force equilibrium on robots and (2) deadlock occurs to ensure safety when safety is at the brink of being violated. These deductions allow us to interpret deadlock as a subset of the state space, and we show that this set is non-empty and located on the boundary of the safe set. By exploiting these properties, we analyze the number of admissible robot configurations in deadlock and develop a provably correct decentralized algorithm for deadlock resolution to safely deliver the robots to their goals. This algorithm is validated in simulations as well as experimentally on Khepera-IV robots For an interactive version of this paper, please visit https://arxiv.org/abs/2206.01781.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"317 - 336"},"PeriodicalIF":9.2,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49532092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allison Pinosky, Ian Abraham, Alexander Broad, B. Argall, T. Murphey
{"title":"Hybrid control for combining model-based and model-free reinforcement learning","authors":"Allison Pinosky, Ian Abraham, Alexander Broad, B. Argall, T. Murphey","doi":"10.1177/02783649221083331","DOIUrl":"https://doi.org/10.1177/02783649221083331","url":null,"abstract":"We develop an approach to improve the learning capabilities of robotic systems by combining learned predictive models with experience-based state-action policy mappings. Predictive models provide an understanding of the task and the dynamics, while experience-based (model-free) policy mappings encode favorable actions that override planned actions. We refer to our approach of systematically combining model-based and model-free learning methods as hybrid learning. Our approach efficiently learns motor skills and improves the performance of predictive models and experience-based policies. Moreover, our approach enables policies (both model-based and model-free) to be updated using any off-policy reinforcement learning method. We derive a deterministic method of hybrid learning by optimally switching between learning modalities. We adapt our method to a stochastic variation that relaxes some of the key assumptions in the original derivation. Our deterministic and stochastic variations are tested on a variety of robot control benchmark tasks in simulation as well as a hardware manipulation task. We extend our approach for use with imitation learning methods, where experience is provided through demonstrations, and we test the expanded capability with a real-world pick-and-place task. The results show that our method is capable of improving the performance and sample efficiency of learning motor skills in a variety of experimental domains.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"337 - 355"},"PeriodicalIF":9.2,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44538438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reactivity and statefulness: Action-based sensors, plans, and necessary state","authors":"Grace McFassel, Dylan A. Shell","doi":"10.1177/02783649221078874","DOIUrl":"https://doi.org/10.1177/02783649221078874","url":null,"abstract":"Typically to a roboticist, a plan is the outcome of other work, a synthesized object that realizes ends defined by some problem; plans qua plans are seldom treated as first-class objects of study. Plans designate functionality: a plan can be viewed as defining a robot’s behavior throughout its execution. This informs and reveals many other aspects of the robot’s design, including: necessary sensors and action choices, history, state, task structure, and how to define progress. Interrogating sets of plans helps in comprehending the ways in which differing executions influence the interrelationships between these various aspects. Revisiting Erdmann’s theory of action-based sensors, a classical approach for characterizing fundamental information requirements, we show how plans (in their role of designating behavior) influence sensing requirements. Using an algorithm for enumerating plans, we examine how some plans for which no action-based sensor exists can be transformed into sets of sensors through the identification and handling of features that preclude the existence of action-based sensors. We are not aware of those obstructing features having been previously identified. Action-based sensors may be treated as standalone reactive plans; we relate them to the set of all possible plans through a lattice structure. This lattice reveals a boundary between plans with action-based sensors and those without. Some plans, specifically those that are not reactive plans and require some notion of internal state, can never have associated action-based sensors. Even so, action-based sensors can serve as a framework to explore and interpret how such plans make use of state.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"385 - 411"},"PeriodicalIF":9.2,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43006505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Locally connected interrelated network: A forward propagation primitive","authors":"Nicholas Collins, H. Kurniawati","doi":"10.1177/02783649221093092","DOIUrl":"https://doi.org/10.1177/02783649221093092","url":null,"abstract":"End-to-end learning for planning is a promising approach for finding good robot strategies in situations where the state transition, observation, and reward functions are initially unknown. Many neural network architectures for this approach have shown positive results. Across these networks, seemingly small components have been used repeatedly in different architectures, which means improving the efficiency of these components has great potential to improve the overall performance of the network. This paper aims to improve one such component: The forward propagation module. In particular, we propose Locally Connected Interrelated Network (LCI-Net) – a novel type of locally connected layer with unshared but interrelated weights – to improve the efficiency of learning stochastic transition models for planning and propagating information via the learned transition models. LCI-Net is a small differentiable neural network module that can be plugged into various existing architectures. For evaluation purposes, we apply LCI-Net to VIN and QMDP-Net. VIN is an end-to-end neural network for solving Markov Decision Processes (MDPs) whose transition and reward functions are initially unknown, while QMDP-Net is its counterpart for the Partially Observable Markov Decision Process (POMDP) whose transition, observation, and reward functions are initially unknown. Simulation tests on benchmark problems involving 2D and 3D navigation and grasping indicate promising results: Changing only the forward propagation module alone with LCI-Net improves VIN’s and QMDP-Net generalisation capability by more than 3× and 10×, respectively.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"371 - 384"},"PeriodicalIF":9.2,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48996411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}