{"title":"Establishing new mechanisms with triplet and singlet excited-state hydrogen bonding roles in photoinduced liquid dynamics","authors":"T. Chu, Bai‐Tong Liu","doi":"10.1080/0144235X.2016.1148450","DOIUrl":"https://doi.org/10.1080/0144235X.2016.1148450","url":null,"abstract":"The interaction between hydrogen donor and acceptor molecules, known well as hydrogen bonding, forms a ubiquitous network in the natural and synthesis world. The hydrogen bonding role has thus been the subject of intensive work in the past. In this article, we discuss and show how the new mechanisms have been established in terms of the hydrogen bonding changes by reviewing some of the combined experimental and theoretical studies that have recently shed light on the intricate role of both triplet and singlet excited-state hydrogen bondings in photoinduced liquid dynamics and phenomena.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"14 1","pages":"187 - 208"},"PeriodicalIF":6.1,"publicationDate":"2016-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81058188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electron collisions in atmospheres","authors":"L. Campbell, M. Brunger","doi":"10.1080/0144235X.2016.1179002","DOIUrl":"https://doi.org/10.1080/0144235X.2016.1179002","url":null,"abstract":"Collisions with electrons from several sources are common throughout planetary atmospheres. While in most circumstances direct electron impact is less significant than solar radiation, electron collisions have a major influence on the chemistry driven by both photon and particle impact. This review addresses electron collisions in atmospheres, with emphasis on cases where electron impact drives, enhances, or otherwise interacts with chemical processes. Understanding of atmospheric processes typically involves computational simulation based on theory, remotely-sensed atmospheric data, atomic and molecular physics data and chemical reaction rates. These and the modelling techniques will therefore also be covered. An example of current and future work on electron impact on the hydroxyl radical (OH) is presented, where applications in both atmospheric studies and plasma medicine are important.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"22 1","pages":"297 - 351"},"PeriodicalIF":6.1,"publicationDate":"2016-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86529744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Herman, T. Foldes, K. Didriche, C. Lauzin, T. Vanfleteren
{"title":"Overtone spectroscopy of molecular complexes containing small polyatomic molecules","authors":"M. Herman, T. Foldes, K. Didriche, C. Lauzin, T. Vanfleteren","doi":"10.1080/0144235X.2016.1171039","DOIUrl":"https://doi.org/10.1080/0144235X.2016.1171039","url":null,"abstract":"The literature on the high-resolution spectroscopic investigation of molecular complexes containing small polyatomic species excited in their vibrational overtones is reviewed. They turn out to be complexes containing acetylene, ammonia and water, mainly excited in their 2CH, 2NH and 2OH vibrations, respectively. The majority of results published on these systems was obtained using an instrumental set-up based on cw-cavity ring-down spectroscopy, built in the ‘Laboratoire de Chimie quantique et Photophysique’ at the ‘Université libre de Bruxelles’ (CQP/ULB) and named FANTASIO+, which is described. It allowed retrieving upper state vibrational predissociation lifetimes, which are highlighted together with more results. The sequence of experiments at CQP/ULB prior and along the line of those supporting the investigation of molecular complexes is briefly illustrated.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"17 1","pages":"243 - 295"},"PeriodicalIF":6.1,"publicationDate":"2016-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82162459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insight into the bubble column evaporator and its applications","authors":"M. Shahid, C. Fan, R. Pashley","doi":"10.1080/0144235X.2016.1147144","DOIUrl":"https://doi.org/10.1080/0144235X.2016.1147144","url":null,"abstract":"This paper presents a review of the bubble column evaporator (BCE) and its many novel applications. The BCE process offers a continuously produced source of high air–water interface and consequently provides high overall heat and mass transfer coefficients. Although the bubbling process itself is both simple to use and apply, our understanding of the fundamental physical and chemical principles involved is surprisingly limited and there are many issues yet to be explained. Recently the process has been used to develop new methods for the precise determination of enthalpies of vaporisation (ΔHvap) of concentrated salt solutions, as an evaporative cooling system, a sub-boiling thermal desalination unit, for sub-boiling thermal sterilisation, for low temperature thermal decomposition of different solutes in aqueous solution and for the inhibition of particle precipitation in supersaturated solutions. These novel applications can be very useful in many industrial practices, such as desalination, water/waste water treatment, thermolysis of ammonium bicarbonate (NH4HCO3) for the regeneration in forward osmosis and refrigeration related industries. The background theories and models used to explain the BCE process are also reviewed and this fundamental knowledge is applied to the design of BCE systems and to explain recently explored applications, as well as potential improvements. Many other prospective applications of the BCE process are also reported in this paper.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"2012 1","pages":"143 - 185"},"PeriodicalIF":6.1,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73700349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Rodríguez-Cantano, T. González-Lezana, P. Villarreal
{"title":"Path integral Monte Carlo investigations on doped helium clusters","authors":"R. Rodríguez-Cantano, T. González-Lezana, P. Villarreal","doi":"10.1080/0144235X.2015.1132595","DOIUrl":"https://doi.org/10.1080/0144235X.2015.1132595","url":null,"abstract":"One of the most commonly employed methods to study doped helium clusters is the path integral Monte Carlo (PIMC) approach. In this review we present results of recent investigations on a series of both atomic and diatomic dopants attached to droplets formed with up to 40 He atoms. Besides the comparison with similar studies existing in the literature, this work also gives the possibility to analyse different issues such as the role played by the He–impurity interaction in the overall geometry of the clusters, the inclusion of internal molecular degrees of freedom and the exchange permutation symmetry in the PIMC calculations. The study of the structure and energies of and at thermal equilibrium presented in this work thus covers most of the usual aspects treated for these kinds of doped systems.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"30 1","pages":"37 - 68"},"PeriodicalIF":6.1,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77699651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements","authors":"Lan Yuan, Chuang Han, Min‐Quan Yang, Yi‐Jun Xu","doi":"10.1080/0144235X.2015.1127027","DOIUrl":"https://doi.org/10.1080/0144235X.2015.1127027","url":null,"abstract":"The expected depletion of fossil fuel reserves and its serious environmental impact have emphasised the issue of sustainable development of the human society. Solar hydrogen by photocatalytic water splitting is a promising alternative to conventional fossil fuels, which is of great potential to relieve the energy and environmental issues and bring an energy revolution in a clean and sustainable manner. This review is going to make a brief introduction of the basic principles of photocatalytic water splitting and the concept of different kinds of water splitting systems. Various engineering strategies for searching higher efficiency of water splitting based on the photocatalytic processes, including light harvesting, charge carriers separation and co-catalysts loading, have been outlined and discussed with selected typical examples on some elaborately designed semiconductor-based photocatalytic systems. Moreover, recent impressive progresses and advancements for photocatalytic water splitting with some promising materials are presented. Finally, this review is concluded with a summary and perspective in this hot area of research.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"16 1","pages":"1 - 36"},"PeriodicalIF":6.1,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77712844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes","authors":"Lai‐Sheng Wang","doi":"10.1080/0144235X.2016.1147816","DOIUrl":"https://doi.org/10.1080/0144235X.2016.1147816","url":null,"abstract":"Photoelectron spectroscopy (PES) in combination with computational chemistry has been used systematically over the past decade to elucidate the structures and chemical bonding of size-selected boron clusters. Small boron clusters have been found to be planar or quasi-planar, consisting of a monocyclic circumference with one or more interior atoms. The propensity for planarity has been found to be a result of both σ and π electron delocalisation over the molecular plane, giving rise to concepts of σ and π multiple aromaticity. In particular, the B36 cluster has been found to possess a highly stable planar structure with a central hexagonal vacancy. This finding provides the first indirect experimental evidence that single-atom layer boron-sheets with hexagonal vacancies, dubbed ‘borophene’, are potentially viable. Another exciting discovery has been the observation and characterisation of the first all-boron fullerenes. PES revealed that the cluster consisted of two isomers with very different electron binding energies. Global minimum searches led to two nearly degenerate isomers competing for the global minimum: a quasi-planar isomer with a double hexagonal vacancy and an unprecedented cage isomer. In the neutral, the B40 cage is overwhelmingly the global minimum, which is the first all-boron fullerene to be observed and is named ‘borospherene’. Rapid progresses in our understanding of the structures and bonding of size-selected boron clusters have been made during the past decade, which will be the focus of this review. The recent findings about borophenes and borospherenes have stimulated growing interests in boron clusters and will accelerate the pace of discovery in boron chemistry and nanostructures.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"1 1","pages":"142 - 69"},"PeriodicalIF":6.1,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89070954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Janssen, N. Macías-ruvalcaba, M. Aguilar-martínez, Mark N. Kobrak
{"title":"Metal extraction to ionic liquids: the relationship between structure, mechanism and application","authors":"C. Janssen, N. Macías-ruvalcaba, M. Aguilar-martínez, Mark N. Kobrak","doi":"10.1080/0144235X.2015.1088217","DOIUrl":"https://doi.org/10.1080/0144235X.2015.1088217","url":null,"abstract":"Ionic liquids (ILs) have recently emerged as an extremely promising medium for the extraction of metals from aqueous phases. ILs are salts that are liquid at room temperature, and have physical and chemical properties that make them potentially valuable replacements for organic molecular solvents. However, that same ionic character gives rise to extraction mechanisms that have no analogue in molecular liquids. While metals generally exist in hydrophobic neutral complexes in molecular liquids, charged complexes incorporating hydrophobic ligands may be highly soluble in IL phases. Further, the ionic character of ILs permits ion exchange mechanisms involving component ions of the IL, raising the possibility that the extraction process may degrade the IL and contaminate the aqueous phase. The purpose of this review is to provide a broad overview of metal extraction from aqueous to IL phase, using the extraction mechanism as a common basis for analysis of extraction phenomena that might otherwise appear quite different. The goal is to identify both the challenges and opportunities offered by the unique properties of ILs, and to provide a framework for the design of metal extraction processes based on the use of ILs.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"68 1","pages":"591 - 622"},"PeriodicalIF":6.1,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90289087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies","authors":"L. Gartzia‐Rivero, J. Bañuelos, I. López‐Arbeloa","doi":"10.1080/0144235X.2015.1075279","DOIUrl":"https://doi.org/10.1080/0144235X.2015.1075279","url":null,"abstract":"The development of nanometrically templated artificial light harvesting antennas and energy transfer devices is a highly active area with outstanding challenges. The herein presented review deals with the design of photoactive nanomaterials and multichromophoric arrays looking towards the development of artificial antenna systems. In particular we have focused in the conditions which rule the excitation energy transfer processes in each case. To this aim, a wide variety of luminescent fluorophores encapsulated into either inorganic or organic hosts, as well as molecular systems based on scaffolding of suitable laser dyes have been deeply studied. The main goal is to design systems which harvest the light over a broad spectral region (in particular the ultraviolet-visible section of the electromagnetic spectrum) and transfer it to the target place and with a desired energy (especially in the red edge of the visible) via successive energy transfer hops. To this purpose, three different approaches have been considered to develop optical antennas: (i) hybrid materials based on LTL zeolite aluminosilicate doped with laser dyes absorbing and emitting in different regions of the visible (blue, green or red); (ii) dye-doped latex nanoparticles, in which luminescent fluorophores undergoing intermolecular energy transfer processes are encapsulated; (iii) molecular antennas based on donor and acceptor dyes covalently linked through a spacer. These luminescent antennas have been designed for photonic purposes such as tunable dye lasers, light modulators or polarity probes.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"22 1","pages":"515 - 556"},"PeriodicalIF":6.1,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86620500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation of resonantly stabilised free radicals via the reactions of atomic carbon, dicarbon, and tricarbon with unsaturated hydrocarbons: theory and crossed molecular beams experiments","authors":"A. Mebel, R. Kaiser","doi":"10.1080/0144235X.2015.1075280","DOIUrl":"https://doi.org/10.1080/0144235X.2015.1075280","url":null,"abstract":"Resonance stabilised free radicals (RSFRs) play an important role in the growth of polycyclic aromatic hydrocarbons and ultimately in the production of soot and carbonaceous particles in combustion flames, in the interstellar medium, and in planetary atmospheres. This article reviews extensive experimental crossed molecular beams and theoretical ab initio/Rice–Ramsperger–Kassel–Marcus studies in the last two decades of the reactions of atomic carbon, C(3P), dicarbon, C2(X1Σg+/a3Πu), and tricarbon, C3(X1Σg+), with unsaturated hydrocarbons, from acetylene to benzene, showing that the reactions form various types of RSFR via Cn(n = 1–3)-for-H, Cn-for-CH3, and Cn-for-CxHy exchange mechanisms. The RSFRs produced in these reactions include CxH (x = 1–8), propargyl (C3H3) and its substituted analogues, 2,4-pentadiynyl-1 (i-C5H3) and 1,4-pentadiynyl-3 (n-C5H3) together with their methyl substituted counterparts, butatrienyl (i-C4H3) and its substituted analogues, and hexenediynyl, i-C6H3, as well as cyclic five-, six-, and seven-member ring radicals including aromatic phenyl, benzyl, and tolyls. The reactions of atomic carbon and dicarbon proceed by barrierless additions to double, triple, or ‘aromatic’ bonds of the unsaturated hydrocarbons, form highly exothermic products, and are fast even at very low temperatures, whereas the reactions of singlet tricarbon require high barriers to be overcome, often leading to endothermic products, and can occur only at high temperatures. The paper summarises typical reaction mechanisms for small carbon species (C, C2, and C3) with unsaturated hydrocarbons and describes implications of the considered reactions in combustion chemistry and astrochemistry.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"332 1","pages":"461 - 514"},"PeriodicalIF":6.1,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74069651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}