Journal of Fluids Engineering-Transactions of the Asme最新文献

筛选
英文 中文
Particle Image Velocimetry In A Centrifugal Pump: Influence Of Walls On The Flow At Different Axial Positions 离心泵中的粒子图像测速:不同轴向位置壁面对流量的影响
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-10-01 DOI: 10.1115/1.4063616
Rodolfo Marcilli Perissinotto, William Denner Pires Fonseca, Rafael Franklin Lazaro Cerqueira, William Monte Verde, Antonio C. Bannwart, Erick Franklin, Marcelo Souza Castro
{"title":"Particle Image Velocimetry In A Centrifugal Pump: Influence Of Walls On The Flow At Different Axial Positions","authors":"Rodolfo Marcilli Perissinotto, William Denner Pires Fonseca, Rafael Franklin Lazaro Cerqueira, William Monte Verde, Antonio C. Bannwart, Erick Franklin, Marcelo Souza Castro","doi":"10.1115/1.4063616","DOIUrl":"https://doi.org/10.1115/1.4063616","url":null,"abstract":"Abstract For almost a century, humans have relied on pumps for the transport of low-viscous fluids in commercial, agricultural, industrial activities. Details of the fluid flow in impellers often influence the overall performance of the pump, and may explain unstable and inefficient operations taking place sometimes. However, most studies in the literature were devoted to understanding the flow in the mid-axial position of the impeller, only a few focusing their analysis on regions closer to solid walls. This paper aims at studying the water flow on the vicinity of the front and rear covers (shroud and hub) of a radial impeller to address the influence of these walls on the fluid dynamics. For that, experiments using particle image velocimetry (PIV) were conducted in a transparent pump at three different axial planes, and the PIV images were processed for obtaining the average velocity fields and profiles, and turbulence levels. Our results suggest that: significant angular deviations are observed when the velocity vectors on peripheral planes are compared with those on the central plane; the velocity profiles close to the border are similar to those in the middle, but the magnitudes are lower close to the hub than to the shroud; the turbulent kinetic energy on the periphery is eight times greater than that measured at the center. Our results bring new insights that can help proposing mathematical models and improving the design of new impellers. A database and technical drawings of the centrifugal pump are also available in this paper.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136117641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Combined Delayed Detached Eddy Simulation and Linearized Navier–Stokes Equation Study on the Generation and Reduction of Aerodynamic Noises Inside Steam Turbine Control Valve With Acoustic Liner 基于延迟分离涡模拟和线性化Navier-Stokes方程的汽轮机控制阀内气动噪声产生与降噪研究
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-09-19 DOI: 10.1115/1.4063020
Yuchao Tang, Peng Wang, Yingzheng Liu
{"title":"A Combined Delayed Detached Eddy Simulation and Linearized Navier–Stokes Equation Study on the Generation and Reduction of Aerodynamic Noises Inside Steam Turbine Control Valve With Acoustic Liner","authors":"Yuchao Tang, Peng Wang, Yingzheng Liu","doi":"10.1115/1.4063020","DOIUrl":"https://doi.org/10.1115/1.4063020","url":null,"abstract":"Abstract This study was aimed at numerically investigating the source, generation mechanism, and strategy for reducing aerodynamic noises inside a steam turbine control valve. A delayed detached eddy simulation was performed to extract the three-dimensional unsteady turbulent flow structures formed within the serpentine flow passage of the turbine valve. Acoustic analogies, spatial Fourier transform, and spectral proper orthogonal decomposition on the delayed detached eddy simulation-simulated flow data were complementarily combined to clarify the generation mechanism of tonal and broadband aerodynamic noises. The results showed that broadband noises were produced by wall-attached jet flow and turbulent mixing flow between the annular wall jets and central reverse flow. High-intensity tonal noises were generated by the excitation of multi-order natural acoustic modes of the bell-shaped valve spindle. The intensive acoustic pressure pulsations concentrated inside the bell jar and propagated along the diffuser to the downstream turbine chamber. A novel ring acoustic liner was designed using the acoustic impedance model to reduce the valve noises without sacrificing the flow performance. The noise reduction effectiveness was evaluated by solving the linearized Navier–Stokes equations in the frequency domain.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Trimmed Rear Shroud On Performance and Axial Thrust of Multi-Stage Centrifugal Pump with Emphasis On Visualizing Flow Losses 后叶冠修整对多级离心泵性能和轴向推力的影响——以流动损失可视化为重点
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-09-16 DOI: 10.1115/1.4063438
Yandong Gu, Sun Hao, Chuan Wang, Rong Lu, Benqing Liu, Ge Jie
{"title":"Effect of Trimmed Rear Shroud On Performance and Axial Thrust of Multi-Stage Centrifugal Pump with Emphasis On Visualizing Flow Losses","authors":"Yandong Gu, Sun Hao, Chuan Wang, Rong Lu, Benqing Liu, Ge Jie","doi":"10.1115/1.4063438","DOIUrl":"https://doi.org/10.1115/1.4063438","url":null,"abstract":"Abstract Multi-stage centrifugal pumps are frequently used in high-lift applications and consume considerable energy, but suffer from poor performance and large axial force. The rear shroud of impeller is trimmed for reducing axial thrust, but this degrades performance. This study analyses performance degradation and optimizes performance and axial force. Experiments and simulations are conducted on different ratios of rear shroud to front shroud (Lambda). Total pressure losses are calculated, and flow losses are visualized using the entropy generation method. Both measured and simulated performances decrease as the rear shroud is trimmed. Designs with different Lambda meet the head coefficient requirement of 1.1. However, Lambda of 0.86 has the best efficiency of 42.7%, Lambda of 0.83 reaches 42.5%, Lambda of 0.8 shows the lowest efficiency of 39.9%. Efficiency in the middle channel improves as the rear shroud is trimmed, but this cannot offset increased losses in the impeller and rear side chamber. Entropy production is exacerbated in the axial passage between impeller and rear side chamber due to the collision between impeller-driven flow and pressure-driven backflow. When Lambda is reduced by 0.03, axial thrust drops by 7%. To compromise between performance and axial thrust, Lambda should be designed at 0.83.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"167 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135308011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Closure to Discussion of “Higher Order Chemical Reaction and Radiation Effects on Magnetohydrodynamic Flow of a Maxwell Nanofluid With Cattaneo-Christov Heat Flux Model Over a Stretching Sheet in a Porous Medium” (Vinodkumar Reddy, M. and Lakshminarayana, P., 2022, ASME J. Fluids Eng., 144(4), p. 041204) “基于cattanio - christov热流模型的麦克斯韦纳米流体在多孔介质中拉伸薄片上的高阶化学反应和辐射效应”(Vinodkumar Reddy, M. and Lakshminarayana, P., 2022, ASME J.流体工程。, 144(4), p. 041204)
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-08-17 DOI: 10.1115/1.4063077
Vinodkumar Reddy Mulinti, P Lakshminarayana
{"title":"Closure to Discussion of “Higher Order Chemical Reaction and Radiation Effects on Magnetohydrodynamic Flow of a Maxwell Nanofluid With Cattaneo-Christov Heat Flux Model Over a Stretching Sheet in a Porous Medium” (Vinodkumar Reddy, M. and Lakshminarayana, P., 2022, ASME J. Fluids Eng., 144(4), p. 041204)","authors":"Vinodkumar Reddy Mulinti, P Lakshminarayana","doi":"10.1115/1.4063077","DOIUrl":"https://doi.org/10.1115/1.4063077","url":null,"abstract":"Our response to the Discussion by Pantokratoras [1] is as follows:Claim-1: The author [1] claimed that the temperature profiles did not converge smoothly. It does not mean that the results are wrong. All the obtained outcomes satisfied the boundary conditions of the current study. This happened due to the common eta values considered for both flow and thermal profiles. We can change the eta value for smooth convergence of thermal profiles but there will not be any change in results. Many theoretical investigations published similar types of outcomes in this area of research. We already provided the comparative analysis to show that the obtained results are correct and agree well with the available results in the literature.Claim-2: It is clear that gravity acts in the vertical direction, and the effect is more on vertical flows. It does not mean that there is no effect of gravity on the horizontal flow. The impact of buoyancy also impacts the flow amplitude irrespective of its flow direction.The Refs. [2–10] support our claims.Finally, the claims made by the author Asterios Pantokratoras are not acceptable for the current theoretical work.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136215058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussion on “Higher Order Chemical Reaction and Radiation Effects on Magnetohydrodynamic Flow of a Maxwell Nanofluid With Cattaneo–Christov Heat Flux Model Over a Stretching Sheet in a Porous Medium” (Reddy Vinodkumar, M. and Lakshminarayana, P., 2022, ASME J. Fluids Eng., 144(4), p. 041204) “基于Cattaneo-Christov热流模型的麦克斯韦纳米流体在多孔介质中拉伸薄片上的高阶化学反应和辐射效应”的讨论(Reddy Vinodkumar, M.和Lakshminarayana, P., 2022, ASME J.流体工程。, 144(4), p. 041204)
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-08-17 DOI: 10.1115/1.4063076
Asterios Pantokratoras
{"title":"Discussion on “Higher Order Chemical Reaction and Radiation Effects on Magnetohydrodynamic Flow of a Maxwell Nanofluid With Cattaneo–Christov Heat Flux Model Over a Stretching Sheet in a Porous Medium” (Reddy Vinodkumar, M. and Lakshminarayana, P., 2022, ASME J. Fluids Eng., 144(4), p. 041204)","authors":"Asterios Pantokratoras","doi":"10.1115/1.4063076","DOIUrl":"https://doi.org/10.1115/1.4063076","url":null,"abstract":"The most important development in Fluid Mechanics during the 20th century was the concept of boundary layer flow introduced by Prandtl in Ref. [1]. A boundary layer is that layer of fluid which forms in the vicinity of a surface bounding the fluid. Every time a fluid moves along a surface a boundary layer near the surface appears. Therefore, boundary layers exist in the interior of water pipes, in sewer pipes, in irrigation channels, near the earth's surface, and around buildings due to winds, near airplane wings, around a moving car, at the river bottom, inside the blood vessels and so on. Therefore, it is a popular field in Fluid Mechanics for engineers, physicists, and mathematicians. Hundreds of papers are published each year in this field. However, errors appear in many papers. Four usual errors made in investigation of boundary layer flows have been analyzed by Pantokratoras in Ref. [2]. The most usual error is that concerning the truncation of velocity and temperature profiles, and this kind of errors exist in Ref. [3]. The analysis of errors in Ref. [3] follows.In Ref. [3] the boundary conditions (11) are as follows: (1)f′=0,θ=0,ϕ=0 asη→∞where f′ is the nondimensional fluid velocity, θ is the nondimensional temperature, and ϕ is the nondimensional concentration. In Eq. (1), η→∞ means a very long η.In Fig. 1 of the present work, the dimensionless temperature profile taken from Fig. 11 of Ref. [3] is shown. It is seen that the temperature profile from Ref. [3] does not approach the ambient condition asymptotically but intersects the horizontal axis with a steep angle (the profile by Ref. [3] is a straight line). At the same figure, it is shown a correct profile (sketch), proposed by the present author, which extends to high values of transverse component η and approaches smoothly the ambient condition. In Fig. 11 of Ref. [3], the calculations have been restricted to a maximum η equal to 5. It is obvious that this calculation domain is insufficient to capture the real shape of profile and a higher value of η is needed.According to above analysis, most of the curves in Figs. 3, 5, 6, 8–16, 18–21 in Ref. [3] are incorrect.The temperature gradient θ′(0)=∂θ(0)∂η at point A, which lies at the sheet, is quite different in the work presented in Ref. [3] and the corrected profile. This means that ALL −θ′(0) values in Tables 1–4 in Ref. [3] are wrong. More information on the truncation error is given by Pantokratoras in Ref. [4]. Recently a similar paper with truncated profiles has been retracted [5].From Fig. 1 of Ref. [3], it is clear that the x axis is horizontal, and the y axis is vertical. The horizontal momentum equation (2) in Ref. [3] is as follows: (2)u∂u∂x+v∂u∂y=υ∂2u∂y2−λ1(u2∂2u∂x2+2uv∂2u∂x∂y+v2∂2u∂y2)−υku−σB02uρ+g(βT(T−T∞)+βC(C−C∞)It is well known that gravity acts in the vertical direction. Therefore, the gravity term g(βT(T−T∞)+βC(C−C∞) in Eq. (2) must be zero. For the same reason, the gravity terms Grθ and Gcϕ in the transformed equatio","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136215059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Aspect Ratio on Drag and Flow Structure for Cylinders With Two Free Ends 宽高比对两端自由气缸阻力流动结构的影响
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-06-06 DOI: 10.1115/1.4062575
Thomas Shepard, Deify Law, Jacob Dahl, Rhett Reichstadt, Arun Sriniwas Selvamani
{"title":"Impact of Aspect Ratio on Drag and Flow Structure for Cylinders With Two Free Ends","authors":"Thomas Shepard, Deify Law, Jacob Dahl, Rhett Reichstadt, Arun Sriniwas Selvamani","doi":"10.1115/1.4062575","DOIUrl":"https://doi.org/10.1115/1.4062575","url":null,"abstract":"Abstract When examining the literature for flow effects on circular cylinders one can find many studies on infinite cylinders and cantilevered cylinders but minimal data related to cylinders with two free ends (Shepard, T., Law, D., Dahl, J., Reichstadt, R., and Selvamani, A. S., 2022, “Impact of Aspect Ratio on Drag and Flow Structure for Cylinders With Two Free Ends,” ASME Paper No. V001T03A031.). The limited data available shows that the cylinder aspect ratio affects the drag and frequency content of flow within the wake however these studies were done at discreet Reynolds numbers. In order to better understand the combined impact of aspect ratio and Reynolds number a series of wind tunnel tests and numerical simulations has been conducted for cylinders with two free ends having aspect ratios of 2–15. Tests were carried out in the subcritical regime with Reynolds numbers ranging 13000–105,000. Tip vortex effects, which vary with aspect ratio, are shown to impact the cylinder surface pressure, drag coefficient, and wake Strouhal numbers though Reynolds number effects are minor for the conditions studied. The results are compared against existing historical data and show the trend of drag coefficient increasing with cylinder aspect ratio (Shepard, T., Law, D., Dahl, J., Reichstadt, R., and Selvamani, A. S., 2022, “Impact of Aspect Ratio on Drag and Flow Structure for Cylinders With Two Free Ends,” ASME Paper No. V001T03A031).","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135493643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in Analytical Modeling of Water Hammer 水锤解析建模研究进展
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-04-26 DOI: 10.1115/1.4062290
Kamil Urbanowicz, Haixiao Jing, Anton Bergant, Michal Stosiak, Marek Lubecki
{"title":"Progress in Analytical Modeling of Water Hammer","authors":"Kamil Urbanowicz, Haixiao Jing, Anton Bergant, Michal Stosiak, Marek Lubecki","doi":"10.1115/1.4062290","DOIUrl":"https://doi.org/10.1115/1.4062290","url":null,"abstract":"Abstract Analytical formulas for laminar water hammer in horizontal pipes were extended and simplified into a compact mathematical form based on dimensionless parameters: dimensionless time, water hammer number, etc. Detailed treatment of turbulent water hammer analytical solutions is beyond the scope of this paper. In the Muto and Takahashi solution, novel Laplace and time domain formulas for flow velocity and wall shear stress were developed. A series of comparative studies of unified analytical solutions with numerical solutions and the results of measurements were carried out. The study shows that models that account for the frequency-dependent nature of hydraulic resistance agree very well with experimental results over a wide range of water hammer numbers Wh, particularly when Wh ≤ 0.1.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136267128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Experimental Study of Turbulence Response in a Slowly Accelerating Turbulent Channel Flow 慢加速湍流通道湍流响应的实验研究
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-04-03 DOI: 10.1115/1.4062166
Benjamin Oluwadare, Shuisheng He
{"title":"Experimental Study of Turbulence Response in a Slowly Accelerating Turbulent Channel Flow","authors":"Benjamin Oluwadare, Shuisheng He","doi":"10.1115/1.4062166","DOIUrl":"https://doi.org/10.1115/1.4062166","url":null,"abstract":"Abstract An investigation of flow acceleration from initial statistically steady turbulent flow to final statistically steady turbulent flow is conducted experimentally using particle image velocimetry (PIV) and constant temperature anemometry (CTA). The turbulence response is investigated as the acceleration periods and acceleration rates are varied in a controlled fashion. This work expands the research by Mathur et al. (2018, “Temporal Acceleration of a Turbulent Channel Flow,” J. Fluid Mech., 835, pp. 471–490.) studying slower and longer transient flows. It also complements the numerical studies of a step increase in the flowrate of (He and Seddighi, 2013, “Turbulence in Transient Channel Flow,” J. Fluid Mech., 715, pp. 60–102. and He and Seddighi, 2015, “Transition of Transient Channel Flow After a Change in Reynolds Number,” J. Fluid Mech., 764, pp. 395–427.). The results obtained from the current investigations are qualitatively similar to those obtained previously. Consistent with previous studies, the response of turbulence in the current slow transient flow is again characterized by a laminar-turbulent transition. The initial increase of the flow development among the cases investigated can be categorized as faster, medium, and slower responses. Modifications are made to the equivalent Reynolds number and the initial turbulence intensity proposed earlier in order to account for the slow accelerating flow rates and the continuous change of the bulk velocities of the cases investigated. It has been shown that the critical equivalent Reynolds number based on these modifications and the initial turbulence intensity are well correlated for all cases investigated and a power-law relation is established.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136328784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Onto Quantifying Unsteady Propulsion Characteristics Using Momentum and Energy Control Volume Assessments 基于动量和能量控制体积评估的非定常推进特性量化研究
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-03-20 DOI: 10.1115/1.4057036
George Loubimov, Michael Kinzel
{"title":"Onto Quantifying Unsteady Propulsion Characteristics Using Momentum and Energy Control Volume Assessments","authors":"George Loubimov, Michael Kinzel","doi":"10.1115/1.4057036","DOIUrl":"https://doi.org/10.1115/1.4057036","url":null,"abstract":"Abstract This effort presents a novel approach to interrogate efficiency for unsteady, undulating propulsion using variable momentum and energy conservation (VMEC) assessments. These integral approaches utilize large amounts of data from computational fluid dynamics (CFD) to address present difficulties associated with separating thrust from drag associated with propelling bodies as well as potentially resolve issues associated with defining a nonzero efficiency for a body in self-propulsion. Such a fundamental issue is addressed through strategic control volume assessments of the momentum and energy conservation equations. In this work, the Method of Manufactured Solutions (MMS) is used to verify the integral-based evaluation approach and better quantify output. The MMS results indicate the method is valid and that one can separate work associated with lift and drag from the energy budget. This separation procedure provides a means to separate propulsive and drag forces. The effort then studies previously validated CFD simulations of heaving and pitching foils to provide insight associated with separating axial forces into their thrust and drag components for highly complex systems. The effort then presents a new efficiency metric that can obtain nonzero efficiencies in self-propulsion. Overall, the results indicate that energy-based assessments provide insight that is a step forward toward isolating loss from propulsive mechanisms and developing proper metrics of efficiency.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"1072 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135035241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Flow Behavior of Turbulent Wall-Jet in the Viscous Shear Regime with Moving Wall Condition 动壁条件下粘性剪切湍流壁面射流的流动特性研究
3区 工程技术
Journal of Fluids Engineering-Transactions of the Asme Pub Date : 2023-03-13 DOI: 10.1115/1.4056998
Vishwa Mohan Behera, Sushil Kumar Rathore
{"title":"Investigation of Flow Behavior of Turbulent Wall-Jet in the Viscous Shear Regime with Moving Wall Condition","authors":"Vishwa Mohan Behera, Sushil Kumar Rathore","doi":"10.1115/1.4056998","DOIUrl":"https://doi.org/10.1115/1.4056998","url":null,"abstract":"Abstract This work involves studying the effects of plate motion on the turbulent flow behavior of a wall jet stream flowing over a flat plate moving at a constant velocity in a quiescent atmosphere. A modified low-Reynolds-number turbulence model developed by Yang and Shih (YS model) is used to perform the numerical investigation. The YS model involves applying integration to a wall technique to capture the flow and heat transfer phenomenon in the near-wall region. The Reynolds number is taken as 15,000 and Prandtl number of the fluid as 7. The plate motion effect on the flow behavior is observed for the various velocity ratios Up =0−2. The velocity vector diagrams and the local velocity profiles at various axial locations are plotted to analyze the flow pattern variation with the plate velocity. Based on the investigation of velocity profiles, nearly self-similar velocity profiles are noticed for Up=0, 0.5, and 2 whereas for Up=1.0 and 1.5, the velocity profiles display similarity near the wall but diverge away from the wall. The turbulent kinetic energy (TKE) (k) and its dissipation rate (ε) within the viscous shear regime are predicted for moving plate conditions. The dissipation rate appears to be higher for higher velocity ratios. Overall, the plate motion significantly influences the flow field.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135905067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信