{"title":"A stable matching method for technology trading with intuitionistic fuzzy multi-attribute information","authors":"Decai Kong, Yi Tang, Hao Zhang, Aorui Bi","doi":"10.3233/jifs-232275","DOIUrl":"https://doi.org/10.3233/jifs-232275","url":null,"abstract":"Technology trading matching facilitates quicker solution-finding for technology demanders and expedites the transformation of scientific and technological achievements. Yet, unstable matchings often lead traders to renounce existing contracts, sidestep trading intermediaries, and resort to private transactions. This results in inefficient trading mechanisms and market disarray. To ensure a stable and mutually satisfactory match for both suppliers and demanders, we propose a stable two-sided matching decision-making method that incorporates intuitionistic fuzzy multi-attribute information. Initially, we introduce an intuitionistic fuzzy TOPSIS approach to compute the comprehensive satisfaction of both suppliers and demanders by aggregating intuitionistic fuzzy information across various attributes. Subsequently, we design a multi-objective optimization model that weighs both stability and satisfaction to determine the ideal technology trading pairs. We conclude with a real-world example that demonstrates the proposed method’s application, and its effectiveness is corroborated through sensitivity and comparative analyses.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135781077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuaina Huang, Zhiyong Zhang, Bin Song, Yueheng Mao
{"title":"Multimodal fusion sensitive information classification based on mixed attention and CLIP model1","authors":"Shuaina Huang, Zhiyong Zhang, Bin Song, Yueheng Mao","doi":"10.3233/jifs-233508","DOIUrl":"https://doi.org/10.3233/jifs-233508","url":null,"abstract":"Social network attackers leverage images and text to disseminate sensitive information associated with pornography, politics, and terrorism,causing adverse effects on society.The current sensitive information classification model does not focus on feature fusion between images and text, greatly reducing recognition accuracy.To address this problem, we propose an attentive cross-modal fusion model (ACMF), which utilizes mixed attention mechanism and the Contrastive Language-Image Pre-training model.Specifically, we employ a deep neural network with a mixed attention mechanism as a visual feature extractor. This allows us to progressively extract features at different levels. We combine these visual features with those obtained from a text feature extractor and incorporate image-text frequency domain information at various levels to enable fine-grained modeling. Additionally, we introduce a cyclic attention mechanism and integrate the Contrastive Language-Image Pre-training model to establish stronger connections between modalities, thereby enhancing classification performance.Experimental evaluations conducted on sensitive information datasets collected demonstrate the superiority of our method over other baseline models. The model achieves an accuracy rate of 91.4% and an F1-score of 0.9145. These results validate the effectiveness of the mixed attention mechanism in enhancing the utilization of important features. Furthermore, the effective fusion of text and image features significantly improves the classification ability of the deep neural network.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135781071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel incremental attribute reduction approach for incomplete decision systems","authors":"Shumin Cheng, Yan Zhou, Yanling Bao","doi":"10.3233/jifs-230349","DOIUrl":"https://doi.org/10.3233/jifs-230349","url":null,"abstract":"With the increasing diversification and complexity of information, it is vital to mine effective knowledge from information systems. In order to extract information rapidly, we investigate attribute reduction within the framework of dynamic incomplete decision systems. Firstly, we introduce positive knowledge granularity concept which is a novel measurement on information granularity in information systems, and further give the calculation method of core attributes based on positive knowledge granularity. Then, two incremental attribute reduction algorithms are presented for incomplete decision systems with multiple objects added and deleted on the basis of positive knowledge granularity. Furthermore, we adopt some numerical examples to illustrate the effectiveness and rationality of the proposed algorithms. In addition, time complexity of the two algorithms are conducted to demonstrate their advantages. Finally, we extract five datasets from UCI database and successfully run the algorithms to obtain corresponding reduction results.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135943503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Majid Khan, Syeda Iram Batool, Noor Munir, Fahad Sameer Alshammari
{"title":"Construction of small confusion component based on logarithmic permutation for hybrid information hiding scheme","authors":"Majid Khan, Syeda Iram Batool, Noor Munir, Fahad Sameer Alshammari","doi":"10.3233/jifs-233823","DOIUrl":"https://doi.org/10.3233/jifs-233823","url":null,"abstract":"The design and development of secure nonlinear cryptographic Boolean function plays an unavoidable measure for modern information confidentiality schemes. This ensure the importance and applicability of nonlinear cryptographic Boolean functions. The current communication is about to suggest an innovative and energy efficient lightweight nonlinear multivalued cryptographic Boolean function of modern block ciphers. The proposed nonlinear confusion element is used in image encryption of secret images and information hiding techniques. We have suggested a robust LSB steganography structure for the secret hiding in the cover image. The suggested approach provides an effective and efficient storage security mechanism for digital image protection. The technique is evaluated against various cryptographic analyses which authenticated our proposed mechanism.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135943855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction and application of logistics scheduling model based on heterogeneous graph neural network","authors":"Lei Wang","doi":"10.3233/jifs-234562","DOIUrl":"https://doi.org/10.3233/jifs-234562","url":null,"abstract":"The core of logistics is scheduling and monitoring. After the modern interprise logistics development concept change, the development prospect of enterprise logistics is more optimistic. Major enterprises have begun to use intelligent logistics scheduling platforms. In order to solve the problem that heterogeneous information fusion is complex in the temporal heterogeneous graphs, this paper proposes to dynamically store and update node representation through an augmented memory matrix in a memory network. At the same time, the model also designs a novel read-write module for the memory matrix, which can effectively capture the timing information in the long interaction sequence and has high flexibility. The model has significantly improved in tasks such as node classification, timing recommendation and visualization. This paper studies the logistics supply chain of modern enterprises and establishes the mathematical model of vehicle scheduling. This paper takes the non-full load scheduling model as the critical research object. Based on the research of logistics supply chain, the vehicle scheduling model is established. The intelligent heuristic algorithm is applied to solve it, and the effective vehicle distribution scheme and driving route are formed. The simulation results show that the approximate Pareto optimal solution obtained by our designed model and algorithm has good robustness. NSGAIIROELSDR can get a better solution in small-scale scheduling. However, in large-scale numerical experiments, the final solution obtained by MOEA/DROELSDR is obviously better than that of NSGAIIROELSDR, and the running time of MOEA/DROELSDR is also shorter. Therefore, we conclude that MOEA/DROELSDR is more suitable for large-scale scheduling, and NSGAIIROELSDR is more suitable for more minor scheduling.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inference and optimal design of accelerated life test using the geometric process for power rayleigh distribution under time-censored data","authors":"Hatim Solayman Migdadi, Nesreen M. Al-Olaimat","doi":"10.3233/jifs-232084","DOIUrl":"https://doi.org/10.3233/jifs-232084","url":null,"abstract":"In this paper, a new extension of the standard Rayleigh distribution called the Power Rayleigh distribution (PRD) is investigated for the accelerated life test (ALT) using the geometric process (GP) under Type-I censored data. Point estimates of the formulated model parameters are obtained via the likelihood estimation approach. In addition, interval estimates are obtained based on the asymptotic normality of the derived estimators. To evaluate the performance of the obtained estimates, a simulation study of 4, 5 and 6 levels of stress is conducted for ALT in different combinations of sample sizes and censored times. Simulation results indicated that point estimates are very close to their initial true values, have small relative errors, are robust and are efficient for estimating the model parameters. Similarly, the interval estimates have small lengths and their coverage probabilities are almost converging to their 95% nominated significance level. The estimation procedure is also improved by the approach of finding optimum values of the acceleration factor to have optimum values for the reliability function at the specified design stress level. This work confirms that PRD has the superiority to model the lifetimes in ALT using GP under any censoring scheme and can be effectively used in reliability and survival analysis.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"169 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Saddle-point solution to zero-sum games subject to noncausal systems","authors":"Xin Chen, Yan Wang, Fuzhen Li","doi":"10.3233/jifs-232401","DOIUrl":"https://doi.org/10.3233/jifs-232401","url":null,"abstract":"A singular system, assumed to possess both regularity and freedom from impulses, is categorized as a causal system. Noncausal systems (NSs) are a class of singular systems anticipated to exhibit regularity. This study focuses on investigating zero-sum games (ZSGs) in the context of NSs. We introduce recurrence equations grounded in Bellman’s optimality principle. The saddle-point solution for multistage two-player ZSGs can be obtained by solving these recurrence equations. This methodology has demonstrated its effectiveness in addressing two-player ZSGs involving NSs. Analytical expressions that characterize saddle-point solutions for two types of two-player ZSGs featuring NSs, encompassing both linear and quadratic control scenarios, are derived in this paper. To enhance clarity, we provide an illustrative example that effectively highlights the utility of our results. Finally, we apply our methodology to analyze a ZSG in the realm of environmental management, showcasing the versatility of our findings.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"168 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136032511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forecast stock price based on GRA-LoGo model of information filtering networks","authors":"Qingyang Liu, Ramin Yahyapour","doi":"10.3233/jifs-232479","DOIUrl":"https://doi.org/10.3233/jifs-232479","url":null,"abstract":"The considerable fluctuation of the stock market caused by COVID-19 tends to have a tremendous and long-lasting adverse impact on the economy. In this work, we propose a novel methodology to investigate this impact on the Chinese medical stock market. We examine changes in the stock network structure using the Triangulated Maximally Filtered Graph (TMFG), which is computationally faster and more adaptable to enormous datasets. Additionally, we develop the LoGo model, which combines a local-global approach in its construction, to predict the stock prices of the Chinese medical stock market. In addition to traditional predictors, we incorporate daily new infected numbers as an additional predictor to reflect the impact of COVID-19. We select data from the 2019-2020 period and divide it into two datasets: one for the period during COVID-19 and another for the period before COVID-19. Firstly, we compute the grey correlation coefficients between stocks instead of standard correlation coefficients. We use these coefficients to build the TMFG, enabling us to identify which stocks played the leading roles. Subsequently, we choose six stocks to build the price prediction models. Compared with the LSTM and SVR models, the LoGo models demonstrates higher accuracy, achieving an average accuracy of 71.67 percent. Furthermore, the execution time of the Logo models is 200 times faster than that of the SVR models and 50 times faster than that of the LSTM models.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"148 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methodology for risk assessment of engineering procurement construction project based on the probabilistic hesitant fuzzy multiple attributes group decision making","authors":"Dongmei Feng, Yifan Kang","doi":"10.3233/jifs-231726","DOIUrl":"https://doi.org/10.3233/jifs-231726","url":null,"abstract":"With the continuous development of China’s economic system, the development of the construction industry is becoming more and more rapid, and the number and scale of construction projects are increasing. Due to the characteristics of large projects and long cycles, there are a large number of construction parties involved in construction projects. The increase in the number of participating partners makes it difficult for their projects to be integrated and managed by management departments such as owners, let alone for various parties to collaborate in the construction of projects. In order to effectively solve this problem, the engineering procurement construction (EPC) general contracting model has emerged. The risk assessment of EPC project is classical multiple attributes group decision making (MAGDM). The probabilistic hesitancy fuzzy sets (PHFSs) are used as a tool for characterizing uncertain information during the risk assessment of EPC project. In this paper, the classical grey relational analysis (GRA) method is extended to PHFSs. Firstly, the basic concept, comparative formula and Hamming distance of PHFSs are introduced. Then, the definition of the score values is employed to obtain the attribute weights based on the information entropy. Then, probabilistic hesitancy fuzzy GRA (PHF-GRA) method is built for MAGDM under PHFSs. Finally, a practical case study for risk assessment of EPC project is designed to validate the proposed method and some comparative studies are also designed to verify the applicability.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel three-value grid scheme and rescue path planning algorithm for building fire","authors":"Le Xu, Jinghua Wang, Ciwei Kuang, Yong Xu","doi":"10.3233/jifs-233862","DOIUrl":"https://doi.org/10.3233/jifs-233862","url":null,"abstract":"The 0-1 grid method is commonly used to divide a fire building into fully passable and fully impassable areas. Firefighters are only able to perform rescue tasks in the fully passable areas. However, in an actual building fire environment, there are three types of areas: fully impassable areas (areas blocked by obstacles or with heavy smoke and fire), fully passable areas, and partially passable areas (areas without obstacles or fire, but with some smoke risk). Due to the urgency of rescue, firefighters can consider conducting rescue tasks in both fully passable and partially passable areas to save valuable rescue time. To address this issue, we propose a three-value grid method, which classifies the fire environment into fully impassable areas, fully passable areas, and partially passable areas, represented by 1, 0, and 0.5, respectively. Considering that the ACO algorithm is prone to local optimum, we propose an enhanced ant colony algorithm (EACO) to solve the fire rescue path planning problem. The EACO introduces an adaptive heuristic function, a new pheromone increment strategy, and a pheromone segmentation rule to predict the shortest rescue path in the fire environment. Moreover, the EACO takes into account both the path length and the risk to balance rescue effectiveness and safety. Experiments show that the EACO obtains the shortest rescue path, which demonstrates its strong path planning capability. The three-value grid method and the path planning algorithm take reasonable application requirements into account.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}