New AstronomyPub Date : 2024-03-07DOI: 10.1016/j.newast.2024.102216
Amos V. Mathias, Jason M. Mkenyeleye, Jefta M. Sunzu
{"title":"Double-layered anisotropic stellar model of embedding class I with gaseous envelope","authors":"Amos V. Mathias, Jason M. Mkenyeleye, Jefta M. Sunzu","doi":"10.1016/j.newast.2024.102216","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102216","url":null,"abstract":"<div><p>The current paper presents a double-layered neutral anisotropic stellar model in general relativistic setting. The model is developed by using Einstein field equations and class I embedding condition. We consider the core with quark matter obeying linear equation of state and envelope layer with gaseous matter admitting Chaplygin gas equation of state. The interior and exterior metric coefficients match smoothly at the interface of core and envelope layers and at the stellar surface. The profiles for matter variables, stability and energy conditions show acceptable trend for physical stellar models. In this model, stellar masses and radii consistent with compact stars HerX-1, 4U1538-52, SAXJ1808.4-3658, CenX-3 and SMCX-1 are generated. We note that studies of multi-layered stars with gaseous envelope and embedding class I condition are missing in investigations conducted in the past.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"110 ","pages":"Article 102216"},"PeriodicalIF":2.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140069650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-03-05DOI: 10.1016/j.newast.2024.102215
Chen Long , Sheng Zheng , Yao Huang , Shuguang Zeng , Zhibo Jiang , Zhiwei Chen , Xiaoyu Luo , Yu Jiang , Xiangyun Zeng
{"title":"Automatically verifying molecular clumps based on supervised learning","authors":"Chen Long , Sheng Zheng , Yao Huang , Shuguang Zeng , Zhibo Jiang , Zhiwei Chen , Xiaoyu Luo , Yu Jiang , Xiangyun Zeng","doi":"10.1016/j.newast.2024.102215","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102215","url":null,"abstract":"<div><p>The detection and statistical analysis of molecular clumps can provide important clues for understanding star formation. In order to improve the reliability of candidates identified by molecular clump detection algorithm, we present a molecular clump verification network (called MCVnet) based on supervised learning in this paper. First, a molecular clump detection algorithm is used to identify the candidates for the clumps. Then the confidence level of each candidate clump is calculated using the MCVnet. Finally, the clumps are classified into three classes (”Yes”,”No”,”Uncertain”) according to the output confidence. The automatic verification algorithm eliminates the clump candidates with low confidence, thus improving the accuracy of the final detection performance. The validation effect of MCVnet is verified in the Milky Way Imaging Scroll Painting (MWISP) project within the region l=+180<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> to +190<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>, b=-5<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> to +5<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> and v=-200 km s<sup>−1</sup> to +200 km s<sup>−1</sup>. The experimental results show that the precision of MCVnet agree with the manual verification by more than 90%, which illustrates the effectiveness of the method in this paper for clump verification. Moreover, the combination of Local Density Clustering (LDC) and MCVnet increases the accuracy of LDC.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"110 ","pages":"Article 102215"},"PeriodicalIF":2.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-29DOI: 10.1016/j.newast.2024.102214
D.D. Pawar , D.K. Raut , A.P. Kale
{"title":"Two forms of dark energy in fractal cosmological model using specific Hubble parameter","authors":"D.D. Pawar , D.K. Raut , A.P. Kale","doi":"10.1016/j.newast.2024.102214","DOIUrl":"10.1016/j.newast.2024.102214","url":null,"abstract":"<div><p>The main objective of this article is to study the fractal FRW cosmological model consisting two forms of dark energy. We studied behavior of the universe in a fractal framework using dark energy accommodated in our universe. The solution of field equations are obtained by using Hubble parameter for transit scale factor <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mi>ϵ</mi><mfenced><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>−</mo><mi>δ</mi></mrow></msup><mo>+</mo><mi>λ</mi></mrow></mfenced></mrow></math></span> . We have obtained the best fitting values of the model parameters <span><math><mrow><mi>ϵ</mi><mo>,</mo><mi>δ</mi></mrow></math></span> and <span><math><mi>λ</mi></math></span> by constraining our model with latest Hubble and SNe-Ia data sets . Finally we perform state-finder diagnosis and observe that obtained model close to standard <span><math><mi>Λ</mi></math></span>CDM model.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"110 ","pages":"Article 102214"},"PeriodicalIF":2.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-29DOI: 10.1016/j.newast.2024.102212
Farzan Mushtaq, Xia Tiecheng
{"title":"Deflection angle of light in an black hole with primary scalar hair geometry","authors":"Farzan Mushtaq, Xia Tiecheng","doi":"10.1016/j.newast.2024.102212","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102212","url":null,"abstract":"<div><p>Weak gravitational lensing of the primary scalar hair black hole is proposed within this work. We can figure out the deflection angle of light by applying the Gibbons and Werner approach with a primary scalar hair black hole. To do this, we compute the Gaussian curvature and find the deflection angle of the weak field limits by applying Gauss-Bonnet theorem. Furthermore, we compute the deflection angle of light when it comes across both plasma and non-plasma field. We also study how the deflection angle behaves graphically in both cases.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102212"},"PeriodicalIF":2.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140015346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-29DOI: 10.1016/j.newast.2024.102211
M. Sharif, M. Zeeshan Gul, Nusrat Fatima
{"title":"Analysis of bouncing cosmology in non-Riemannian geometry","authors":"M. Sharif, M. Zeeshan Gul, Nusrat Fatima","doi":"10.1016/j.newast.2024.102211","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102211","url":null,"abstract":"<div><p>The main objective of this manuscript is to investigate the bouncing cosmology in the background of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity, where <span><math><mi>Q</mi></math></span> defines the non-metricity. For this purpose, we use the reconstruction approach and consider a flat Friedmann–Robertson–Walker spacetime with perfect matter configuration. We examine how the first contracting phase gives the expansion by using a temporal derivative of the scale factor, i.e., <span><math><mrow><mover><mrow><mi>a</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo><</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mover><mrow><mi>a</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mover><mrow><mi>a</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>></mo><mn>0</mn></mrow></math></span> give contraction, bounce point and expansion phases, respectively. Further, we use the order reduction method to solve the modified field equations as these are very difficult due to the presence of additional non-linear expressions. It is analyzed that the original singularity of the universe diminishes for the required bounce conditions. We conclude that the acceleration occurs near the bouncing point and the considered <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> models are consistent with the current cosmic accelerated expansion.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102211"},"PeriodicalIF":2.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140015347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-28DOI: 10.1016/j.newast.2024.102210
R. Wes Tobin , Robert C. Berrington
{"title":"Photometric study of the overcontact binary NSVS2910034","authors":"R. Wes Tobin , Robert C. Berrington","doi":"10.1016/j.newast.2024.102210","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102210","url":null,"abstract":"<div><p>We present BVR<span><math><msub><mrow></mrow><mrow><mi>C</mi></mrow></msub></math></span>+TESS differential photometry of an eclipsing binary system NSVS 2910034. A period analysis reveals unusual variations that are inconsistent with systemic orbital period changes and may be due to surface activity. The best fit models are consistent with a W-type W UMa overcontact binary, consisting of a less massive G7 spectral type star and a more massive K1 spectral type star. An O’Connell effect is present and analyzed. The best fit model represents a very large hot spot that may indicate significant chromospheric activity across a large portion of the stellar surface of the K star.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102210"},"PeriodicalIF":2.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-27DOI: 10.1016/j.newast.2024.102213
Noam Soker
{"title":"Explaining supernova remnant G352.7-0.1 as a peculiar type Ia supernova inside a planetary nebula","authors":"Noam Soker","doi":"10.1016/j.newast.2024.102213","DOIUrl":"https://doi.org/10.1016/j.newast.2024.102213","url":null,"abstract":"<div><p>I identify a point-symmetric morphology of the supernova remnant (SNR) G352.7-0.1 and propose that the outer axially-symmetric structure is the remnant of a common envelope evolution (CEE) of the progenitor system, while the inner structure is the ejecta of a thermonuclear explosion triggered by the merger of a white dwarf (WD) and the core of an asymptotic giant branch (AGB) star. The main radio structure of SNR G352.7-0.1 forms an outer (large) ellipse. The bright X-ray emitting gas forms a smaller ellipse with a symmetry axis inclined to the symmetry axis of the large radio ellipse. The high abundance of iron and the energy of its X-ray lines suggest a type Ia supernova (SN Ia). The massive swept-up gas suggests a relatively massive progenitor system. I propose a scenario with progenitors of initial masses of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ZAMS,1</mi></mrow></msub><mo>≃</mo><mn>5</mn><mtext>–</mtext><mn>7</mn><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ZAMS,2</mi></mrow></msub><mo>≃</mo><mn>4</mn><mtext>–</mtext><mn>5</mn><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span>. At a later phase, the WD remnant of the primary star and the AGB secondary star experience a CEE that ejects the circumstellar material that swept up more ISM to form the large elliptical radio structure. An explosion during the merger of the WD with the core of the AGB star triggered a super-Chandrasekhar thermonuclear explosion that formed the inner structure that is bright in X-ray. A tertiary star in the system caused the misalignment of the two symmetry axes. This study adds to the wide variety of evolutionary routes within the scenarios of normal and peculiar SNe Ia.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102213"},"PeriodicalIF":2.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-22DOI: 10.1016/j.newast.2024.102209
Deniz Yazıcı, Cengiz Yıldırım, Tolga Görüm
{"title":"The timing of resurfacing events in Southern Kasei Valles","authors":"Deniz Yazıcı, Cengiz Yıldırım, Tolga Görüm","doi":"10.1016/j.newast.2024.102209","DOIUrl":"10.1016/j.newast.2024.102209","url":null,"abstract":"<div><p>The second-largest outflow system on Mars is Kasei Valles. The southern branch of Kasei Valles includes two inner channels among the best-preserved examples of glacial and/or fluvial erosion. This study focuses on the landforms formed by surface processes within the midstream part of the southern branch of the Kasei Valles. We mapped the landforms and built a morpho-stratigraphical chronology using their cross-cutting relationships, and numerical crater dating. We interpret a complex geomorphological history, with various landforms in the study area, including fans, landslides, topographic barriers, strandlines, terraces and deeply incised canyons. Two coluvaial fans and a large landslide temporarily blocked the valles, forming topographical barriers to impound fluids (e.g., lava, mudflow, water). It has been suggested that the structures observed in the channels were formed by Bingham or Newtonian fluid. However, these fluids have disappeared but they have left the terraces and strandlines as their geomorphic imprints. The surface texture of the terraces implies that they were probably formed by a very low viscosity fluid that carved the fan, valley floor and formed terrace staircases and deep canyons. Crater statistics reveal two different temporal clusters of colluvial fan formation. The age of the older fan cluster in the Early Amazonian period, and the age of the younger fan cluster in the Late-Middle Amazonian period. The landslide is much younger and estimated to have formed 122 Ma ago, allowing us to constrain the timing of the latest erosional period. The youngest studied geomorphic features are the platy-textured deposits emplaced either as lavas or mudflows, aged 90 Ma, covering the floor of the valles. The strandlines defining the limits of the youngest erosional (thermal) process within the study area truncate the landslide but not the platy-textured features. Therefore, they are older than 90 Ma but younger than 122 Ma, implying environmental conditions sufficient to have allowed a liquid fluid body at the Martian surface during the Latest Amazonian period. Our data suggest that the presence of well-developed terraces between strandlines requires the presence of a fluid (e.g. water, liquid lava, mud) that ponded and subsequently evacuated from the study area.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102209"},"PeriodicalIF":2.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-21DOI: 10.1016/j.newast.2024.102206
Xiao-Mei Duan , Yu Liu , Teng-Fei Song , Feng-Rong Zhu
{"title":"A portable S-DIMM developed for preliminary measurement of seeing for Solar Site Survey: Theory and one case study","authors":"Xiao-Mei Duan , Yu Liu , Teng-Fei Song , Feng-Rong Zhu","doi":"10.1016/j.newast.2024.102206","DOIUrl":"10.1016/j.newast.2024.102206","url":null,"abstract":"<div><p>Imaging quality is highly important for astronomical observations. The imaging quality of a telescope depends not only on the capabilities of the telescope itself but also on its location. When distant stars pass the atmosphere, due to the presence of atmospheric turbulence, the imaging quality becomes degraded. The atmospheric coherence length is the most commonly used parameter to evaluate the influence of the local atmospheric turbulence on telescopes. It is used to describe the degree of atmospheric attenuation of image quality. For the preliminary estimation of atmospheric daytime seeing from a lot of candidate sites, we have developed a portable S-DIMM (PS-DIMM),which is mainly composed of a light-duty tracking mount, a 9 cm aperture lens barrel and a Canon 60D SLR camera. With the PS-DIMM the daytime seeing of a site can be well estimated by measuring the relative displacement variance of the edge positions at both ends of the Sun’s diameter. The principle of PS-DIMM is introduced in this paper. The simultaneous seeing measurements by it and the traditional S-DIMM were carried out at the Fuxian Lake Solar Station, showing a very well correlated between them but with an offset of 2.6 cm. In contrast to the traditional S-DIMM, PS-DIMM offers the advantages of reduced weight and enhanced portability. The utilization of PS-DIMM has played an important role in the early stages of the site survey for the next-generation solar telescopes.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102206"},"PeriodicalIF":2.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139918391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New AstronomyPub Date : 2024-02-16DOI: 10.1016/j.newast.2024.102207
L.A. Gutiérrez-Soto , M. Belén Mari , W.A. Weidmann , F.R. Faifer
{"title":"Unveiling compact planetary nebulae: Broad-band survey analysis and LAMOST confirmation","authors":"L.A. Gutiérrez-Soto , M. Belén Mari , W.A. Weidmann , F.R. Faifer","doi":"10.1016/j.newast.2024.102207","DOIUrl":"10.1016/j.newast.2024.102207","url":null,"abstract":"<div><p>Planetary nebulae (PNe) are pivotal for advancing our knowledge of stellar evolution and galactic chemical enrichment. Recent progress in surveys and data analysis has revolutionized PN research, leading to the discovery of new objects and deeper insights into their properties. We have devised a novel photometric selection method, integrating GAIA and Pan-STARRS photometry, to identify compact PN candidates. This approach utilizes color–color diagrams, specifically <span><math><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>g</mi><mo>)</mo></mrow></math></span> versus <span><math><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>B</mi><mi>P</mi></mrow></msub><mo>−</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi><mi>P</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow></math></span> versus <span><math><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>B</mi><mi>P</mi></mrow></msub><mo>−</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi><mi>P</mi></mrow></msub><mo>)</mo></mrow></math></span>, as primary criteria for candidate selection. The subsequent verification step involves confirming these candidates through LAMOST spectroscopic data. By cross-referencing a comprehensive dataset of PNe, GAIA, Pan-STARRS, and LAMOST DR7 spectra, we explore the potential of our approach and the crucial role played by these surveys in the field of PN research. The LAMOST spectra provide compelling evidence supporting our selection criteria, especially for compact PNe characterized by strong emission lines and low continuum. This characteristic spectral profile in LAMOST data underscores its effectiveness in confirming compact PNe, enabling clear differentiation based on distinctive spectral features. Applying these criteria to a catalog of emission line objects, we have selected a PN candidate. Detailed analysis of its LAMOST spectrum unveiled classical Balmer emission lines and high-ionization lines (He<span>ii</span>, [Ar<span>v</span>], [Ar<span>iii</span>], and [Ne<span>iii</span>]), characteristic of high-ionization PNe, with an absence of low-excitation lines. Utilizing the 1D-photoionization code <span>cloudy</span>, our modeling revealed crucial parameters, including an ionizing source with an effective temperature of 180<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> K, luminosity around 3,400 L<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, and gas abundances encompassing various elements. Comparing the PN’s evolution track, the progenitor star was estimated to have a mass of 2M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. Our findings show the greatest promise for cleanly separating compact PNe from other objects and provide a robust framework for further exploration of these surveys in the context of planetary nebulae.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102207"},"PeriodicalIF":2.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139918392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}