{"title":"An insight review on formation damage induced by drilling fluids","authors":"Mojtaba Kalhor Mohammadi, S. Riahi, E. Boek","doi":"10.1515/revce-2020-0106","DOIUrl":"https://doi.org/10.1515/revce-2020-0106","url":null,"abstract":"Abstract Formation damage is an essential part of drilling and production evaluation, which has a significant effect on well productivity and economics. Drilling fluids are significant sources of formation damage by different mechanisms. This article reviews the research works published during the past 30 years on formation damage associated with drilling fluids, including mechanical damage, chemical damage, and interaction with reservoir rock and fluids. Different filtration techniques, fines migration, and invasion models are discussed based on past studies and recent advancements. Laboratory experiments, methodology, and various aspects of evaluation are considered for further study. Despite presenting different authors’ views and experiences in this area, there is no integrated approach to evaluate formation damage caused by drilling fluids. Finally, the authors analyze the knowledge gap and conclude that a methodology must be designed to improve drilling fluids to prevent formation damage. Recent advances in the area of nanotechnology show promising alternatives for new methods to prevent formation damage.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46647810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Sharifi, R. Halladj, Seyed Javid Royaee, Farshid Towfighi, Sepideh Firoozi, Hamidreza Yousefi
{"title":"Effective factors on performance of zeolite based metal catalysts in light hydrocarbon aromatization","authors":"K. Sharifi, R. Halladj, Seyed Javid Royaee, Farshid Towfighi, Sepideh Firoozi, Hamidreza Yousefi","doi":"10.1515/revce-2020-0082","DOIUrl":"https://doi.org/10.1515/revce-2020-0082","url":null,"abstract":"Abstract Aromatic hydrocarbons are essential compounds, that the presence of which in fuels can improve the octane number. The conversion of the light alkanes to high value aromatics is vital from theoretical and industrial standpoints. Zeolites such as ZSM-5 play an essential role in the aromatization of light alkanes. This paper highlights the mechanism of aromatization of light alkanes such as methane, ethane, propane, butane, and its isomers. Furthermore, effective factors on the aromatization of light alkanes including metal type, crystallinity, acidity, space velocity, pretreatment of zeolites, co-feeding of light hydrocarbon, and operating factors such as temperature have been investigated to determine how a system of zeolite with metals can be useful to reach aromatization with high conversion.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48837537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontmatter","authors":"","doi":"10.1515/revce-2022-frontmatter1","DOIUrl":"https://doi.org/10.1515/revce-2022-frontmatter1","url":null,"abstract":"","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41771864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Kadja, N. F. Himma, N. Prasetya, A. Sumboja, M. Bazant, I. Wenten
{"title":"Advances and challenges in the development of nanosheet membranes","authors":"G. Kadja, N. F. Himma, N. Prasetya, A. Sumboja, M. Bazant, I. Wenten","doi":"10.1515/revce-2021-0004","DOIUrl":"https://doi.org/10.1515/revce-2021-0004","url":null,"abstract":"Abstract The development of highly efficient separation membranes utilizing emerging materials with controllable pore size and minimized thickness could greatly enhance the broad applications of membrane-based technologies. Having this perspective, many studies on the incorporation of nanosheets in membrane fabrication have been conducted, and strong interest in this area has grown over the past decade. This article reviews the development of nanosheet membranes focusing on two-dimensional materials as a continuous phase, due to their promising properties, such as atomic or nanoscale thickness and large lateral dimensions, to achieve improved performance compared to their discontinuous counterparts. Material characteristics and strategies to process nanosheet materials into separation membranes are reviewed, followed by discussions on the membrane performances in diverse applications. The review concludes with a discussion of remaining challenges and future outlook for nanosheet membrane technologies.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49352268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitra Sadat Lavasani, Nahid Raeisi Ardali, R. Sotudeh-Gharebagh, R. Zarghami, J. Abonyi, N. Mostoufi
{"title":"Big data analytics opportunities for applications in process engineering","authors":"Mitra Sadat Lavasani, Nahid Raeisi Ardali, R. Sotudeh-Gharebagh, R. Zarghami, J. Abonyi, N. Mostoufi","doi":"10.1515/revce-2020-0054","DOIUrl":"https://doi.org/10.1515/revce-2020-0054","url":null,"abstract":"Abstract Big data is an expression for massive data sets consisting of both structured and unstructured data that are particularly difficult to store, analyze and visualize. Big data analytics has the potential to help companies or organizations improve operations as well as disclose hidden patterns and secret correlations to make faster and intelligent decisions. This article provides useful information on this emerging and promising field for companies, industries, and researchers to gain a richer and deeper insight into advancements. Initially, an overview of big data content, key characteristics, and related topics are presented. The paper also highlights a systematic review of available big data techniques and analytics. The available big data analytics tools and platforms are categorized. Besides, this article discusses recent applications of big data in chemical industries to increase understanding and encourage its implementation in their engineering processes as much as possible. Finally, by emphasizing the adoption of big data analytics in various areas of process engineering, the aim is to provide a practical vision of big data.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45567781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of potential flow solutions for velocity and shape of long isolated bubbles in vertical pipes","authors":"Alexandre Boucher, R. Belt, A. Liné","doi":"10.1515/revce-2021-0026","DOIUrl":"https://doi.org/10.1515/revce-2021-0026","url":null,"abstract":"Abstract The motion of elongated gas bubbles in vertical pipes has been studied extensively over the past century. A number of empirical and numerical correlations have emerged out of this curiosity; amongst them, analytical solutions have been proposed. A review of the major results and resolution methods based on a potential flow theory approach is presented in this article. The governing equations of a single elongated gas bubble rising in a stagnant or moving liquid are given in the potential flow formalism. Two different resolution methods (the power series method and the total derivative method) are studied in detail. The results (velocity and shape) are investigated with respect to the surface tension effect. The use of a new multi-objective solver coupled with the total derivative method improves the research of solutions and demonstrates its validity for determining the bubble velocity. This review aims to highlight the power of analytical tools, resolution methods and their associated limitations behind often well-known and wide-spread results in the literature.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49477743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in dual-filler mixed matrix membranes","authors":"N. Prasetya, N. F. Himma, P. Sutrisna, I. Wenten","doi":"10.1515/revce-2021-0014","DOIUrl":"https://doi.org/10.1515/revce-2021-0014","url":null,"abstract":"Abstract Mixed matrix membranes (MMMs) have been widely developed as an attractive solution to overcome the drawbacks found in most polymer membranes, such as permeability-selectivity trade-off and low physicochemical stability. Numerous fillers based on inorganic, organic, and hybrid materials with various structures including porous or nonporous, and two-dimensional or three-dimensional, have been used. Demanded to further improve the characteristics and performances of the MMMs, the use of dual-filler instead of a single filler has then been proposed, from which multiple effects could be obtained. This article aims to review the recent development of MMMs with dual filler and discuss their performances in diverse potential applications. Challenges in this emerging field and outlook for future research are finally provided.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45542386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontmatter","authors":"","doi":"10.1515/revce-2021-frontmatter8","DOIUrl":"https://doi.org/10.1515/revce-2021-frontmatter8","url":null,"abstract":"","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41330596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent developments in photocatalytic degradation of insecticides and pesticides","authors":"S. Singh, Pradeep Mishra, S. Upadhyay","doi":"10.1515/revce-2020-0074","DOIUrl":"https://doi.org/10.1515/revce-2020-0074","url":null,"abstract":"Abstract Widespread use of pesticides in agricultural and domestic sectors and their long half-life have led to their accumulation in the environment beyond permissible limits. Advanced chemical oxidation methods including photocatalytic degradation are being widely investigated for their mineralization. Photocatalytic degradation is the most promising method for degrading pesticides as well as other organic pollutants. Titanium dioxide with or without modification has been widely used as the photocatalyst. Some research groups have also tried other photocatalysts. This review presents a critical summary of the research results reported during the past two decades as well as the scope for future research in this area.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43479419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zainab N. Jaf, H. Miran, Zhong‐Tao Jiang, M. Altarawneh
{"title":"Molybdenum nitrides from structures to industrial applications","authors":"Zainab N. Jaf, H. Miran, Zhong‐Tao Jiang, M. Altarawneh","doi":"10.1515/revce-2021-0002","DOIUrl":"https://doi.org/10.1515/revce-2021-0002","url":null,"abstract":"Abstract Owing to their remarkable characteristics, refractory molybdenum nitride (MoN x )-based compounds have been deployed in a wide range of strategic industrial applications. This review reports the electronic and structural properties that render MoN x materials as potent catalytic surfaces for numerous chemical reactions and surveys the syntheses, procedures, and catalytic applications in pertinent industries such as the petroleum industry. In particular, hydrogenation, hydrodesulfurization, and hydrodeoxygenation are essential processes in the refinement of oil segments and their conversions into commodity fuels and platform chemicals. N-vacant sites over a catalyst’s surface are a significant driver of diverse chemical phenomena. Studies on various reaction routes have emphasized that the transfer of adsorbed hydrogen atoms from the N-vacant sites reduces the activation barriers for bond breaking at key structural linkages. Density functional theory has recently provided an atomic-level understanding of Mo–N systems as active ingredients in hydrotreating processes. These Mo–N systems are potentially extendible to the hydrogenation of more complex molecules, most notably, oxygenated aromatic compounds.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41614021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}