High Power Laser Science and Engineering最新文献

筛选
英文 中文
Efficient dual-stage all-solid-state post-compression for 100 W level ultrafast lasers 用于 100 W 级超快激光器的高效双级全固态后压缩技术
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2024-08-27 DOI: 10.1017/hpl.2024.26
Zichen Gao, Jie Guo, Yongxi Gao, Yuguang Huang, Zhihua Tu, Xiaoyan Liang
{"title":"Efficient dual-stage all-solid-state post-compression for 100 W level ultrafast lasers","authors":"Zichen Gao, Jie Guo, Yongxi Gao, Yuguang Huang, Zhihua Tu, Xiaoyan Liang","doi":"10.1017/hpl.2024.26","DOIUrl":"https://doi.org/10.1017/hpl.2024.26","url":null,"abstract":"<p>We demonstrate efficient and economical all-solid-state post-compression based on dual-stage periodically placed thin fused silica plates driven by a more than 100 W ytterbium-doped yttrium aluminum garnet Innoslab amplifier seeded by a fiber frontend. Not only is a more than eight-fold pulse compression with 94% transmission achieved, but also the pulse quality and spatial mode are improved, which can be attributed to the compensation for the residual high-order dispersion and the spatial mode self-cleaning effect during the nonlinear process. It enables a high-power ultrafast laser source with 64 fs pulse duration, 96 W average power at 175 kHz repetition rates and good spatiotemporal quality. These results highlight that this all-solid-state post-compression can overcome the bandwidth limitation of Yb-based lasers with exceptional efficiency and mitigate the spatiotemporal degradation originating from the Innoslab amplifier and fiber frontend, which provides an efficient and economical complement for the Innoslab laser system and facilitates this robust and compact combination as a promising scheme for high-quality higher-power few-cycle laser generation.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compression and acceleration processes of spherical shells in gold cones 金锥中球壳的压缩和加速过程
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2024-04-29 DOI: 10.1017/hpl.2024.24
Huigang Wei, Dawei Yuan, Shaojun Wang, Ye Cui, Xiaohu Yang, Yanyun Ma, Zhe Zhang, Xiaohui Yuan, Jiayong Zhong, Neng Hua, Yutong Li, Jianqiang Zhu, Gang Zhao, Jie Zhang
{"title":"Compression and acceleration processes of spherical shells in gold cones","authors":"Huigang Wei, Dawei Yuan, Shaojun Wang, Ye Cui, Xiaohu Yang, Yanyun Ma, Zhe Zhang, Xiaohui Yuan, Jiayong Zhong, Neng Hua, Yutong Li, Jianqiang Zhu, Gang Zhao, Jie Zhang","doi":"10.1017/hpl.2024.24","DOIUrl":"https://doi.org/10.1017/hpl.2024.24","url":null,"abstract":"<p>Double-cone ignition [Zhang <span>et al.</span>, Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm<span>3</span> along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm<span>3</span>, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"21 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise mode control of mid-infrared high-power laser diodes using on-chip advanced sawtooth waveguide designs 利用片上先进锯齿波导设计实现中红外高功率激光二极管的精确模式控制
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2024-04-26 DOI: 10.1017/hpl.2024.23
Jianmei Shi, Chengao Yang, Yihang Chen, Tianfang Wang, Hongguang Yu, Juntian Cao, Zhengqi Geng, Zhiyuan Wang, Haoran Wen, Hao Tan, Yu Zhang, Dongwei Jiang, Donghai Wu, Yingqiang Xu, Haiqiao Ni, Zhichuan Niu
{"title":"Precise mode control of mid-infrared high-power laser diodes using on-chip advanced sawtooth waveguide designs","authors":"Jianmei Shi, Chengao Yang, Yihang Chen, Tianfang Wang, Hongguang Yu, Juntian Cao, Zhengqi Geng, Zhiyuan Wang, Haoran Wen, Hao Tan, Yu Zhang, Dongwei Jiang, Donghai Wu, Yingqiang Xu, Haiqiao Ni, Zhichuan Niu","doi":"10.1017/hpl.2024.23","DOIUrl":"https://doi.org/10.1017/hpl.2024.23","url":null,"abstract":"<p>Power scaling in conventional broad-area (BA) lasers often leads to the operation of higher-order lateral modes, resulting in a multiple-lobe far-field profile with large divergence. Here, we report an advanced sawtooth waveguide (ASW) structure integrated onto a wide ridge waveguide. It strategically enhances the loss difference between higher-order modes and the fundamental mode, thereby facilitating high-power narrow-beam emission. Both optical simulations and experimental results illustrate the significant increase in additional scattering loss of the higher-order modes. The optimized ASW lasers achieve an impressive output power of 1.1 W at 4.6 A at room temperature, accompanied by a minimal full width at half maximum lateral divergence angle of 4.91°. Notably, the far-field divergence is reduced from 19.61° to 11.39° at the saturation current, showcasing a remarkable 42% improvement compared to conventional BA lasers. Moreover, the current dependence of divergence has been effectively improved by 38%, further confirming the consistent and effective lateral mode control capability offered by our design.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"14 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization methods towards a 10 kW high beam quality fiber laser based on the counter tandem pumping scheme 基于反串联泵浦方案的 10 kW 高光束质量光纤激光器的设计和优化方法
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2024-04-26 DOI: 10.1017/hpl.2024.21
Ruixian Li, Hanshuo Wu, Hu Xiao, Zilun Chen, Jinyong Leng, Liangjin Huang, Zhiyong Pan, Pu Zhou
{"title":"Design and optimization methods towards a 10 kW high beam quality fiber laser based on the counter tandem pumping scheme","authors":"Ruixian Li, Hanshuo Wu, Hu Xiao, Zilun Chen, Jinyong Leng, Liangjin Huang, Zhiyong Pan, Pu Zhou","doi":"10.1017/hpl.2024.21","DOIUrl":"https://doi.org/10.1017/hpl.2024.21","url":null,"abstract":"<p>In this study, we investigated the influence of fiber parameters on stimulated Raman scattering (SRS) and identified a unique pattern of SRS evolution in the counter tandem pumping configuration. Our findings revealed that the SRS threshold in counter-pumping is predominantly determined by the length of the output delivery fiber rather than the gain fiber. By employing the counter tandem pumping scheme and optimizing the fiber parameters, a 10 kW fiber laser was achieved with beam quality <span>M<span>2</span></span> of 1.92. No mode instability or severe SRS limitation was observed. To our knowledge, this study achieved the highest beam quality in over 10 kW fiber lasers based on conventional double-clad Yb-doped fiber.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"59 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New grating compressor designs for XCELS and SEL-100 PW projects 用于 XCELS 和 SEL-100 PW 项目的新型光栅压缩机设计
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2024-04-01 DOI: 10.1017/hpl.2024.18
Efim Khazanov
{"title":"New grating compressor designs for XCELS and SEL-100 PW projects","authors":"Efim Khazanov","doi":"10.1017/hpl.2024.18","DOIUrl":"https://doi.org/10.1017/hpl.2024.18","url":null,"abstract":"<p>The problem of optimizing the parameters of a laser pulse compressor consisting of four identical diffraction gratings is solved analytically. The goal of optimization is to obtain maximum pulse power, completely excluding both beam clipping on gratings and the appearance of spurious diffraction orders. The analysis is carried out in a general form for an out-of-plane compressor. Two particular ‘plane’ cases attractive from a practical point of view are analyzed in more detail: a standard Treacy compressor (TC) and a compressor with an angle of incidence equal to the Littrow angle (LC). It is shown that in both cases the LC is superior to the TC. Specifically, for 160-cm diffraction gratings, optimal LC design enables 107 PW for XCELS and 111 PW for SEL-100 PW, while optimal TC design enables 86 PW for both projects.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"117 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-repetition-rate source of nanosecond duration kA-current pulses driven by relativistic laser pulses 由相对论激光脉冲驱动的纳秒级 kA 电流脉冲高重复率源
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2024-03-14 DOI: 10.1017/hpl.2024.14
Michael Ehret, Jakub Cikhardt, Philip Wykeham Bradford, Iuliana-Mariana Vladisavlevici, Tomas Burian, Diego de Luis, Jose Luis Henares, Rubén Hernández Martín, Jon Imanol Apiñaniz, Roberto Lera, José Antonio Pérez-Hernández, João Jorge Santos, Giancarlo Gatti
{"title":"High-repetition-rate source of nanosecond duration kA-current pulses driven by relativistic laser pulses","authors":"Michael Ehret, Jakub Cikhardt, Philip Wykeham Bradford, Iuliana-Mariana Vladisavlevici, Tomas Burian, Diego de Luis, Jose Luis Henares, Rubén Hernández Martín, Jon Imanol Apiñaniz, Roberto Lera, José Antonio Pérez-Hernández, João Jorge Santos, Giancarlo Gatti","doi":"10.1017/hpl.2024.14","DOIUrl":"https://doi.org/10.1017/hpl.2024.14","url":null,"abstract":"<p>We report the first high-repetition-rate generation and simultaneous characterization of nanosecond-scale return currents of kA-magnitude issued by the polarization of a target irradiated with a PW-class high-repetition-rate titanium:sapphire laser system at relativistic intensities. We present experimental results obtained with the VEGA-3 laser at intensities from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$5times {10}^{18}$</span></span></img></span></span> to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$1.3times {10}^{20}$</span></span></img></span></span> W cm<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${}^{-2}$</span></span></img></span></span>. A non-invasive inductive return-current monitor is adopted to measure the derivative of return currents of the order of kA ns<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071321735-0753:S2095471924000148:S2095471924000148_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${}^{-1}$</span></span></img></span></span> and analysis methodology is developed to derive return currents. We compare the current for copper, aluminium and Kapton targets at different laser energies. The data show the stable production of current peaks and clear prospects for the tailoring of the pulse shape, which is promising for future applications in high-energy-density science, for example, electromagnetic interference stress tests, high-voltage pulse response measurements and charged particle beam lensing. We compare the target discharge of the order of hundreds of nC with theoretical predictions and a good agreement is found.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"10 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of polarized electron beams through self-injection in the interaction of a laser with a pre-polarized plasma 在激光与预偏振等离子体的相互作用中通过自注入产生偏振电子束
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2024-02-22 DOI: 10.1017/hpl.2024.7
L. R. Yin, X. F. Li, Y. J. Gu, N. Cao, Q. Kong, M. Büscher, S. M. Weng, M. Chen, Z. M. Sheng
{"title":"Generation of polarized electron beams through self-injection in the interaction of a laser with a pre-polarized plasma","authors":"L. R. Yin, X. F. Li, Y. J. Gu, N. Cao, Q. Kong, M. Büscher, S. M. Weng, M. Chen, Z. M. Sheng","doi":"10.1017/hpl.2024.7","DOIUrl":"https://doi.org/10.1017/hpl.2024.7","url":null,"abstract":"<p>Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particle-in-cell simulations. The evolution of the electron beam polarization is studied based on the Thomas–Bargmann–Michel–Telegdi equation for the transverse and longitudinal self-injection, and the depolarization process is found to be influenced by the injection schemes. In the case of transverse self-injection, as found typically in the bubble regime, the spin precession of the accelerated electrons is mainly influenced by the wakefield. However, in the case of longitudinal injection in the quasi-1D regime (for example, F. Y. Li <span>et al</span>., Phys. Rev. Lett. 110, 135002 (2013)), the direction of electron spin oscillates in the laser field. Since the electrons move around the laser axis, the net influence of the laser field is nearly zero and the contribution of the wakefield can be ignored. Finally, an ultra-short electron beam with polarization of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240819071231704-0444:S2095471924000070:S2095471924000070_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$99%$</span></span></img></span></span> can be obtained using longitudinal self-injection.</p>","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"2020 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of millijoule-level sub-5fs violet laser pulses 产生毫焦耳级亚 5fs 紫激光脉冲
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2023-12-22 DOI: 10.1017/hpl.2023.100
Xinhua Xie, Yi Hung, Yunpei Deng, Adrian L. Cavalieri, A. Baltuška, Steven L. Johnson
{"title":"Generation of millijoule-level sub-5fs violet laser pulses","authors":"Xinhua Xie, Yi Hung, Yunpei Deng, Adrian L. Cavalieri, A. Baltuška, Steven L. Johnson","doi":"10.1017/hpl.2023.100","DOIUrl":"https://doi.org/10.1017/hpl.2023.100","url":null,"abstract":"","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"78 15","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138945520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distortions in focusing laser pulses due to spatio-temporal couplings–An analytic description 时空耦合导致的聚焦激光脉冲失真--分析描述
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2023-12-18 DOI: 10.1017/hpl.2023.96
K. Steiniger, Fabia Dietrich, D. Albach, M. Bussmann, A. Irman, M. Loeser, R. Pausch, T. Püschel, Roland Sauerbrey, S. Schöbel, Ulrich Schramm, Mathias Siebold, K. Zeil, A. Debus
{"title":"Distortions in focusing laser pulses due to spatio-temporal couplings–An analytic description","authors":"K. Steiniger, Fabia Dietrich, D. Albach, M. Bussmann, A. Irman, M. Loeser, R. Pausch, T. Püschel, Roland Sauerbrey, S. Schöbel, Ulrich Schramm, Mathias Siebold, K. Zeil, A. Debus","doi":"10.1017/hpl.2023.96","DOIUrl":"https://doi.org/10.1017/hpl.2023.96","url":null,"abstract":"","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"46 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138965261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-repetition-rate and High-power Efficient Picosecond Thin-disk Regenerative Amplifier 高重复率和高功率高效皮秒薄盘再生放大器
IF 4.8 1区 物理与天体物理
High Power Laser Science and Engineering Pub Date : 2023-12-15 DOI: 10.1017/hpl.2023.97
Sizhi Xu, Yubo Gao, Xing Liu, Yewang Chen, D. Ouyang, Junqing Zhao, Minqiu Liu, Xu Wu, C. Guo, Cangtao Zhou, Qitao Lve, Shuangchen Ruan
{"title":"High-repetition-rate and High-power Efficient Picosecond Thin-disk Regenerative Amplifier","authors":"Sizhi Xu, Yubo Gao, Xing Liu, Yewang Chen, D. Ouyang, Junqing Zhao, Minqiu Liu, Xu Wu, C. Guo, Cangtao Zhou, Qitao Lve, Shuangchen Ruan","doi":"10.1017/hpl.2023.97","DOIUrl":"https://doi.org/10.1017/hpl.2023.97","url":null,"abstract":"","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"28 6","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138997456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信