{"title":"Fault geometry invariance and dislocation potential in antiplane crustal deformation: physics-informed simultaneous solutions","authors":"Tomohisa Okazaki, Kazuro Hirahara, Naonori Ueda","doi":"10.1186/s40645-024-00654-7","DOIUrl":"https://doi.org/10.1186/s40645-024-00654-7","url":null,"abstract":"<p>Earthquake-induced crustal deformation provides valuable insights into the mechanisms of tectonic processes. Dislocation models offer a fundamental framework for comprehending such deformation, and two-dimensional antiplane dislocations are used to describe strike-slip faults. Previous earthquake deformation analyses observed that antiplane dislocations due to uniform fault slips are influenced predominantly by fault tips. Here, we state a general principle of fault geometry invariance in antiplane dislocations and exploit its theoretical consequence to define dislocation potentials that enable a streamlined crustal deformation analysis. To demonstrate the benefits of this theory, we present an analytical example and construct a rapid numerical solver for crustal deformation caused by variable fault slip scenarios using physics-informed neural networks, whose mesh-free property is suitable for modeling dislocation potentials. Fault geometry invariance and the dislocation potential may further the analysis of antiplane crustal deformation, particularly for uncertainty quantification and inversion analysis regarding unknown fault geometries in realistic crustal structures.</p>","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Natural 14C abundances and stable isotopes suggest discrete uptake routes for carbon and nitrogen in cold seep animals","authors":"Hidetaka Nomaki, Shigeaki Kojima, Yosuke Miyairi, Yusuke Yokoyama, Chong Chen","doi":"10.1186/s40645-024-00648-5","DOIUrl":"https://doi.org/10.1186/s40645-024-00648-5","url":null,"abstract":"<p>Cold seeps, where geofluids containing methane and other hydrocarbons originating from the subseafloor seeps through the sediment surface, play important roles in the elemental and energy flux between sediment and seawater. These seep sites often harbor communities of endemic animals supported by chemolithoautotrophic bacteria, either through symbiosis or feeding. Despite these animal communities being intensively studied since their discovery in the 1980’s, the contribution of carbon from seep fluid to symbiotic microbes and subsequently host animals remains unclear. Here, we used natural-abundance radiocarbon to discern carbon sources: the ambient bottom water or the seeping geofluid. The <sup>14</sup>C concentrations were measured for vesicomyid clams, a parasitic calamyzine polychaete, and a siboglinid tubeworm species from four different cold seep sites around Japan. We found most vesicomyid clams exhibiting <sup>14</sup>C concentrations slightly lower than that of the ambient bottom water, suggesting up to 9% of C for chemolithoautotrophy originates from geofluid DIC. The different extent of fluid contribution across species may be explained by different routes to incorporate DIC and/or different DIC concentrations in the geofluid at each seep site. Stable nitrogen isotopic compositions further suggested N incorporation from geofluids in these clams, where the burrowing depth may be a key factor in determining their δ<sup>15</sup>N values. The siboglinid tubeworm showed a clear dependency for geofluid DIC, with a contribution of > 40%. Our results demonstrate the effectiveness of <sup>14</sup>C analyses for elucidating the nutritional ecology of cold seep animals and their symbionts, as was previously shown for hydrothermal vent ecosystems.</p>\u0000","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"58 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A methodology for appropriate withdrawal of tsunami warnings based on numerical simulations","authors":"Naoko Shinmoto, Toshitaka Baba","doi":"10.1186/s40645-024-00647-6","DOIUrl":"https://doi.org/10.1186/s40645-024-00647-6","url":null,"abstract":"<p>This study performed large-scale numerical simulations for predicting the attenuation of tsunamis caused by the 2011 Tohoku, Japan, and 2010 Maule, Chile earthquakes, recorded at Japanese tide gauges. Tsunami amplitude waveforms were generated by computing the moving root-mean-square of the data for quantitative analyses. Sensitivity analysis showed that tsunami nonlinearity and computational grid intervals near the tide gauges significantly impact the prediction of tsunami attenuation. The predicted withdrawal times of tsunami warnings agreed with the observations; however, time discrepancies were observed for advisory withdrawals at several stations. Using the proposed method, we predicted the warning period of a great interplate earthquake in the Nankai Trough to be approximately one day. These findings can provide critical information for disaster prevention because the withdrawal of warnings is directly related to permission to enter coastal areas affected by the tsunami, whereas unnecessarily long warnings hinder rescue operations.</p>","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"24 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyan Zhang, Mina Ma, Yujia Hu, Yiliang Han, Yanhui Zhang
{"title":"Electrical conductivity of mantle minerals beneath East Asia revealed by geomagnetic observatory data","authors":"Yuyan Zhang, Mina Ma, Yujia Hu, Yiliang Han, Yanhui Zhang","doi":"10.1186/s40645-024-00653-8","DOIUrl":"https://doi.org/10.1186/s40645-024-00653-8","url":null,"abstract":"<p>The electrical conductivity of the earth’s mantle can provide important information about geodynamic phenomena. East Asia is associated with complex tectonics and geodynamic processes. Hence, it is necessary to better understand the deep structure beneath East Asia. In this study, geomagnetic data obtained from East Asian observatories are employed to image the conductivity structure of the mantle at depths ranging from 410 to 900 km. First, the data are processed using the modified bounded influence remote reference processing (BIRRP) method and the ratio method is used to correct for the ocean effect. Thereafter, the stable <i>C</i>-response curves at the 27 observatories are estimated, and 1D electrical conductivity models for these observatories are established using the L-BFGS method. The conductivity-depth profiles reveal a heterogeneous distribution of the electrical conductivity beneath East Asia. The mantle transition zone (MTZ) beneath East China and Japan is found to be more conductive, whereas the MTZ beneath central and southern regions of China is more resistive. In East China, the dehydration of the stagnant Pacific slab may lead to an increase in the conductivity of the mantle minerals. There is also the possibility of upwelling of the thermal material from the lower mantle beneath the Japanese Island arc. In Northwest China, there exists a large high-conductive body beneath the Tarim area, which could indicate an upwelling of the Tarim mantle plume. Our results provide insights into the deep structure of the earth at the mantle scale.</p>\u0000","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"53 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kuroshio Extension cold-core ring and wind drop-off observed in 2021–2022 winter","authors":"Akira Nagano, Minoru Kitamura, Kensuke Watari, Iwao Ueki","doi":"10.1186/s40645-024-00649-4","DOIUrl":"https://doi.org/10.1186/s40645-024-00649-4","url":null,"abstract":"<p>Energetic cyclonic mesoscale eddies, which are called cold-core rings and are shed southward from the Kuroshio Extension jet and form closed streamlines, affect the atmosphere through the heat exchange across the sea surface. To investigate the effect of rings on the atmosphere, we performed atmosphere and ocean observations across a cold-core ring centered around 34.5° N, 150.0° E using a research vessel from November 2021 to January 2022 and a shallow-water profiling float from November 23 to 28, 2021. As heat is released from the sea surface, no significant spatial contrast in the sea surface and mixed layer temperatures was detected across the ring. Meanwhile, the sea surface wind was occasionally observed to be weak around the ring, possibly through the air–sea interactions. The wind drop-off maintained a turbulent heat flux small around the ring. The wind field associated with the wind drop-off was examined by the rotary empirical orthogonal function analysis of the satellite sea surface wind data. The minimum of the sea surface wind is found to shift northward relative to the ring center and to be more than approximately 5 m s<span>(^{-1})</span> lower than the surrounding region. The shallow-water profiling float deployed around the ring center observed a rapid freshening event in the mixed layer, which can be attributed to the water intrusion from the north of the Kuroshio Extension jet through the interaction with the jet. This suggests that the cold water from the north continually affects the atmosphere without leaving traces in the shipboard sea surface temperature observations.</p>","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"49 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shingo Takeuchi, Kosuke Ishige, Shimpei Uesawa, Yukiko Suwa
{"title":"Unsinkable, long-drifting, millimeter-sized pumice of the 2021 eruption of Fukutoku-Oka-no-Ba submarine volcano","authors":"Shingo Takeuchi, Kosuke Ishige, Shimpei Uesawa, Yukiko Suwa","doi":"10.1186/s40645-024-00652-9","DOIUrl":"https://doi.org/10.1186/s40645-024-00652-9","url":null,"abstract":"<p>Understanding the relationship between pumice formation and long-term floatability in seawater is becoming increasingly important in terms of eruption dynamics, material cycles, biological and environmental effects, and ocean hazards. Pumice rafts were produced during the 2021 eruption of the Fukutoku-Oka-no-Ba submarine volcano in the Pacific Ocean, far from the Japanese archipelago. The pumice rafts reached the Amami-Ōshima and Okinawa Islands approximately two months after the eruption and continued to cover the sea surface at several bays and ports, providing a great opportunity to study the characteristics of raft pumices. Sieve analysis of the floating pumice indicated that the pumice rafts characteristically contained several millimeter-sized particles with a peak at 2–4 mm. This evidence raises an important question why the millimeter-sized, Fukutoku-Oka-no-Ba 2021 pumice particles were able to float for over two months, which exceeds the floatation time shown in previous studies. To answer this question, a porosity measurement technique for millimeter-to-centimeter-sized pumice particles was established and applied to drifting pumice that erupted during the Fukutoku-Oka-no-Ba 2021 eruption. The total, connected, and isolated porosities (including errors) were acquired for floating and sunken pumice particles. As studied for the floating pumice from past submarine eruptions, most floating pumice particles contain a high amount of isolated porosity (> 30 vol%) and are thus unsinkable even when the pumice size is in the millimeter scale. This study emphasizes that skeletal density is a useful measure for the determination of pumice floatability (sinkable or unsinkable). As the particle size decreases, crystals are lost from the floating pumice particles, suggesting that the particle size of the floating pumice is affected by its petrological properties (crystal content and size). A comparison with natural pumices from subaerial eruptions and experimental pumices from magma decompression experiments suggests that the Fukutoku-Oka-no-Ba 2021 pumices contain abundant isolated pores due to the suppression of expansion after fragmentation by quenching in seawater, and that the relatively low to moderate crystal content in the magma (< 17 vol%) may contribute to favorable conditions to produce abundant, millimeter-sized, unsinkable pumice.</p><p>Most floating pumices have lower saturation density than seawater due to abundant isolated porosity (> 30 vol%) and are thus unsinkable even when the pumice size is in the millimeter scale. </p>","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"132 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jumpei Yoshioka, Kenji M. Matsuzaki, Sota Niki, Junichiro Kuroda, Takafumi Hirata
{"title":"Integration of new zircon U–Pb ages with biostratigraphy to establish a high-precision age model of the Miocene Nakayama Formation on Sado Island in Central Japan","authors":"Jumpei Yoshioka, Kenji M. Matsuzaki, Sota Niki, Junichiro Kuroda, Takafumi Hirata","doi":"10.1186/s40645-024-00651-w","DOIUrl":"https://doi.org/10.1186/s40645-024-00651-w","url":null,"abstract":"<p>The most common age constraint for the diatomaceous sediments is biostratigraphy of siliceous microfossils. Although biostratigraphy is a powerful tool to establish stratigraphy and correlate with sedimentary sequences in other sites, biostratigraphy generally includes uncertainties difficult to evaluate. In this study, we measured zircon U–Pb ages of eight tuff beds intercalated with diatomaceous mudstone of the Nakayama Formation on Sado Island in Central Japan and integrated the U–Pb ages with diatom and radiolarian biostratigraphy, whose ages and errors were re-evaluated by this study, to establish an age model precisely representing the sedimentary age. Two tuff beds in the upper and middle part of the formation offered zircon U–Pb ages of 6.7 ± 0.2 Ma and 10.87 ± 0.07 Ma, which are consistent with biostratigraphy, and provided a good example of effective integration of zircon U–Pb ages with the biostratigraphy. On the other hand, zircon U–Pb ages of the other six tuff beds in the lower part are around 12 Ma and not distinguishable from each other. In addition, older zircon grains in the 6 tuff beds are assembled in the interval from 30 to 20 Ma, which is consistent with the age of the volcanic basement rocks forming most part of Sado Island. Similarities in chemical compositions of glass shards and age distributions of zircon grains indicate that the volcaniclastic components in the tuff beds should originate from single or associated magmatic activities.</p>","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"75 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical survey of electroactive microbial populations in deep-sea hydrothermal fields","authors":"Masahiro Yamamoto, Yoshifumi Kawada, Yoshihiro Takaki, Kosuke Shimoniida, Mariko Shitara, Akiko Tanizaki, Hiroyuki Kashima, Miho Hirai, Yutaro Takaya, Tatsuo Nozaki, Takafumi Kasaya, Ken Takai","doi":"10.1186/s40645-024-00650-x","DOIUrl":"https://doi.org/10.1186/s40645-024-00650-x","url":null,"abstract":"<p>Electric discharge in deep-sea hydrothermal fields leads us to expect the existence of electroactive microbial ecosystems in the environments. Electrochemical properties such as electric field distribution on the seafloor and electrical conductivity of the rock can be useful indicators of searching electroactive microbial community in natural environments. We performed electric field measurements in deep-sea hydrothermal fields and collected rock samples by a remotely operative vehicle (ROV) operation. Several spots on the seafloor with strong electric fields were detected, which included both active hydrothermal vent areas and inactive sulfide deposits far from the vents. The electrical conductivity of the rock samples was correlated with the copper and iron sulfide content. Microbial community compositions of the rock samples were characterized by small subunit (SSU) rRNA gene amplicon sequencing analysis. The abundance of several microbial components, which are highly related to electroactive microorganisms such as <i>Geobacteraceae</i> and <i>Thiomicrorhabdus,</i> was affected by the electrical properties of rock samples. The results suggested that electrochemical properties on the seafloor would be related to the abundance of possible electroactive microbial populations, and that the electrochemical survey may be a powerful tool for exploring electroactive ecosystems.</p>\u0000","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"14 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulation of nitrogen isotopic ratios of cellular components","authors":"Naohiko Ohkouchi, Yuta Isaji, Nanako O. Ogawa","doi":"10.1186/s40645-024-00646-7","DOIUrl":"https://doi.org/10.1186/s40645-024-00646-7","url":null,"abstract":"<p>This paper is an attempt to generalize the nitrogen isotope information of the molecules that make up the cell from our point of view. Nitrogen in the cell exists as 20 proteinaceous amino acids, nucleobases, hemes, chlorophylls, and others, and their composition is similar among organisms. Based on a physiologically simple autonomous system that maintains a balance between inputs and outputs, it is theoretically predicted that <sup>15</sup>N is distributed to each cellular compound with a certain regularity, and thus a specific relationship in nitrogen isotopic ratios among compounds. Previous studies essentially confirm this. The nitrogen isotopic ratio of compound <i>i</i> constituting the cell can be generalized as <i>δ</i><sup>15</sup>N<sub><i>i</i></sub> = <i>δ</i><sup>15</sup>N<sub>plant</sub> + <i>Δ</i><sub>i</sub> (<i>TP</i> − 1) + <i>γ</i><sub><i>i</i></sub>, where TP represents the trophic position, and <i>Δ</i><sub><i>i</i></sub> and <i>γ</i><sub><i>i</i></sub> are the trophic discrimination factor and the intracellular <sup>15</sup>N distribution of compound <i>i</i>, respectively. Knowing reliable values of <i>Δ</i><sub><i>i</i></sub> and <i>γ</i><sub><i>i</i></sub> will help us to better understand nitrogen dynamics in the biosphere and advance our understanding of the picture of the Earth’s environment through biogeochemistry.</p>","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"39 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities","authors":"Akira Tani, Noboru Masui, Ting-Wei Chang, Motonori Okumura, Yutaka Kokubu","doi":"10.1186/s40645-024-00645-8","DOIUrl":"https://doi.org/10.1186/s40645-024-00645-8","url":null,"abstract":"<p>Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high O<sub>3</sub> concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between NO<sub><i>x</i></sub> and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, <i>Quercus serrata</i> and <i>Quercus mongolica</i> var. <i>crispula</i>, and bamboo species, <i>Phyllostachys pubescens</i> and <i>Phyllostachys bambusoides,</i> are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three <i>Quercus</i> species, had the highest basal emission rate (BER). The monoterpene storage type conifers <i>Larix kaempferi</i> and <i>Pinus densiflora</i> have relatively lower BERs. Emission data are not available for <i>Castanopsis cuspidata</i>, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan.</p>\u0000","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"15 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}