{"title":"Reconstructing inflationary potential from NANOGrav 15-year data: A robust study using Non-Bunch Davies initial condition","authors":"Sayantan Choudhury","doi":"10.1016/j.jheap.2024.10.003","DOIUrl":"10.1016/j.jheap.2024.10.003","url":null,"abstract":"<div><div>We discuss the theoretical framework behind reconstruction of a generic class of inflationary potentials for canonical single-field slow-roll inflation in a model-independent fashion. The Non-Bunch Davies (NBD) initial condition is an essential choice to determine the structure of potential and to accommodate the blue-tilted tensor power spectrum feature recently observed in NANOGrav. Using the reconstruction technique we found the favoured parameter space which supports blue tilted tensor power spectrum. The validity of the EFT prescription in inflation is also maintained through the use of a new field excursion formula while keeping the necessary and sufficient conditions on the sub-Planckian field values in check. We find that the reconstructed potential display inflection point behaviour, which has deeper connection with high energy physics.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 220-242"},"PeriodicalIF":10.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Murtaza , A. Ditta , Tayyab Naseer , G. Mustafa , S.K. Maurya , A. Ghaffar , Faisal Javed
{"title":"On the evaluation of accretion process near a quantum-improved charged black hole","authors":"G. Murtaza , A. Ditta , Tayyab Naseer , G. Mustafa , S.K. Maurya , A. Ghaffar , Faisal Javed","doi":"10.1016/j.jheap.2024.10.004","DOIUrl":"10.1016/j.jheap.2024.10.004","url":null,"abstract":"<div><div>This paper deals with astrophysical accretion onto the quantum-improved charged black hole. An accretion process does not depend on time; it is a stationary process. In this analysis, we explore the physical quantities like energy density, radial velocity, sonic speed, and accretion mass rate for quantum-improved charged black holes and compare them with the existing outcomes corresponding to the Schwarzschild black hole. Following the Michel and Babichev approaches, we investigate the quantities mentioned above by taking into account different equations of state. These fundamental approaches and black hole parameters are responsible for decreasing the fluid's radial infalling velocity during the accretion process and, for others, as a gravitational enhancer, increasing the fluid flow into the black hole horizon. The polytropic fluid's accretion process is also discussed. All the quantities are analyzed graphically with a contour structure. It is observed that the maximum accretion rate is achieved for different values of the considered black hole parameters. From this analysis, we may be able to understand the physical mechanism of accretion onto a quantum-improved charged black hole.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 279-289"},"PeriodicalIF":10.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Standardised formats and open-source analysis tools for the MAGIC telescopes data","authors":"","doi":"10.1016/j.jheap.2024.09.011","DOIUrl":"10.1016/j.jheap.2024.09.011","url":null,"abstract":"<div><div>Instruments for gamma-ray astronomy at Very High Energies (<span><math><mi>E</mi><mo>></mo><mn>100</mn><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span>) have traditionally derived their scientific results through proprietary data and software. Data standardisation has become a prominent issue in this field both as a requirement for the dissemination of data from the next generation of gamma-ray observatories and as an effective solution to realise public data legacies of current-generation instruments. Specifications for a standardised gamma-ray data format have been proposed as a community effort and have already been successfully adopted by several instruments. We present the first production of standardised data from the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes. We converted <span><math><mn>166</mn><mspace></mspace><mi>h</mi></math></span> of observations from different sources and validated their analysis with the open-source software <span>Gammapy</span>. We consider six data sets representing different scientific and technical analysis cases and compare the results obtained analysing the standardised data with open-source software against those produced with the MAGIC proprietary data and software. Aiming at a systematic production of MAGIC data in this standardised format, we also present the implementation of a database-driven pipeline automatically performing the MAGIC data reduction from the calibrated down to the standardised data level. In all the cases selected for the validation, we obtain results compatible with the MAGIC proprietary software, both for the manual and for the automatic data productions. Part of the validation data set is also made publicly available, thus representing the first large public release of MAGIC data. This effort and this first data release represent a technical milestone toward the realisation of a public MAGIC data legacy.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 266-278"},"PeriodicalIF":10.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study in the non-canonical domain of power law Plateau inflation","authors":"Yogesh , Mayukh R. Gangopadhyay","doi":"10.1016/j.jheap.2024.10.002","DOIUrl":"10.1016/j.jheap.2024.10.002","url":null,"abstract":"<div><div>The recent Cosmic Microwave Background (CMB) observations are pointing towards a plateau feature in the flat potential of the inflation field to drive the initial acceleration of the Universe. In this regard, Dimopoulos and Owen introduced a very promising model dubbed as Power Law Plateau inflation (PLP) (<span><span>Dimopoulos and Owen, 2016</span></span>) which has this feature in it. But to make this model consistent with observation in the standard cold inflationary scenario, one needs to introduce an epoch of thermal inflation. In this paper, we have shown realizing this model in the non-canonical domain, could actually make the model consistent with the observation without introducing any late-stage thermal inflation. We also report the constraints from the Cosmic Microwave Background observations on the reheating parameter that one can associate with the model parameter.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 214-219"},"PeriodicalIF":10.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Search for GeV gamma-ray emission from SPT-CL J2012-5649 with six years of DAMPE data","authors":"Siddhant Manna, Shantanu Desai","doi":"10.1016/j.jheap.2024.10.001","DOIUrl":"10.1016/j.jheap.2024.10.001","url":null,"abstract":"<div><div>We search for gamma-ray emission from the galaxy cluster SPT-CL J2012-5649 in the energy range from 3 GeV to 1 TeV using the DArk Matter Particle Explorer (DAMPE) telescope. For our analysis, we use three different templates: point source, radial disk, and radial Gaussian. We do not detect a signal with significance <span><math><mo>></mo><mn>3</mn><mi>σ</mi></math></span> for any of these templates at any location within <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>200</mn></mrow></msub></math></span> of the cluster center. We obtain 95% C.L. upper limit on the energy flux ranging between <span><math><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span> and <span><math><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mtext>MeV</mtext><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>s</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> depending on the energy range. These upper limits are consistent with a previously reported non-zero flux detected by Fermi-LAT at 6<em>σ</em> significance. This work represents the first proof of principle search for gamma-ray emission from a single galaxy cluster using DAMPE data.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 210-213"},"PeriodicalIF":10.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kairat Myrzakulov , M. Koussour , O. Donmez , A. Cilli , E. Güdekli , J. Rayimbaev
{"title":"Observational analysis of late-time acceleration in f(Q,Lm) gravity","authors":"Kairat Myrzakulov , M. Koussour , O. Donmez , A. Cilli , E. Güdekli , J. Rayimbaev","doi":"10.1016/j.jheap.2024.09.014","DOIUrl":"10.1016/j.jheap.2024.09.014","url":null,"abstract":"<div><div>In this study, we explored late-time cosmology within an extended class of theories based on <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> gravity. This theory generalizes <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity by incorporating a non-minimal coupling between the non-metricity <em>Q</em> and the matter Lagrangian <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, analogous to the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> theory. The coupling between <em>Q</em> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> leads to the non-conservation of the matter energy-momentum tensor. We first investigated a cosmological model defined by the functional form <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>α</mi><mi>Q</mi><mo>+</mo><mi>β</mi><msubsup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, where <em>α</em>, <em>β</em>, and <em>n</em> are constants. The derived Hubble parameter <span><math><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>3</mn><mi>n</mi></mrow><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac></mrow></msup></math></span> indicates that <em>n</em> significantly influences the scaling of <span><math><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> over cosmic history, with <span><math><mi>n</mi><mo>></mo><mn>2</mn></math></span> suggesting accelerated expansion. We also examined the simplified case of <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, leading to the linear form <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>α</mi><mi>Q</mi><mo>+</mo><mi>β</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, consistent with a universe dominated by non-relativistic matter. Using various observational datasets, including <span><math><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> and Pantheon, we constrained the model parameters. Our analysis showed that the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> model aligns well with observational results and exhibits similar behavior to the ΛCDM model. The results, with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>0.22</mn><mo>±</mo><mn>0.01</mn></math></span> across all datasets, indicate an accelerating universe, highlighting the model's potential as","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 164-171"},"PeriodicalIF":10.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai-Sheng Zhao , Shi-Jie Zheng , Liu-Yuan Li , Ming-Yu Ge , Shuang-Nan Zhang , Shu Zhang , Shao-Lin Xiong , Li-Ming Song
{"title":"Analysis of the drift of the South Atlantic Anomaly using particle monitors onboard Insight-HXMT","authors":"Hai-Sheng Zhao , Shi-Jie Zheng , Liu-Yuan Li , Ming-Yu Ge , Shuang-Nan Zhang , Shu Zhang , Shao-Lin Xiong , Li-Ming Song","doi":"10.1016/j.jheap.2024.09.013","DOIUrl":"10.1016/j.jheap.2024.09.013","url":null,"abstract":"<div><div>Using the particle monitors aboard <span><math><mi>I</mi><mi>n</mi><mi>s</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi></math></span>-HXMT satellite, we analyzed over 6.5 years of continuous data to study the South Atlantic Anomaly (SAA) position, average count rate, and surface size, as well as its evolution from June 2017 to March 2024. We confirm the anti-correlation between the particle count rate obtained by particle monitors and the solar activity, as well as the anti-correlation between the evolution of the SAA surface size and the solar activity. Furthermore, this study confirms earlier measurements of a westward drift of the SAA with a rate of <span><math><mn>0.343</mn><mo>±</mo><msup><mrow><mn>0.002</mn></mrow><mrow><mi>o</mi></mrow></msup></math></span>/yr in longitude. However, it reveals a smaller northward drift with a rate of <span><math><mn>0.028</mn><mo>±</mo><msup><mrow><mn>0.002</mn></mrow><mrow><mi>o</mi></mrow></msup></math></span>/yr in latitude. Two irregular drifts both in longitude and latitude were observed. We suggest that the irregular drifts may be not driven by solar cycle variation of the atmosphere but may be associated with geomagnetic jerks.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 187-193"},"PeriodicalIF":10.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of decoupling process on the configurations of compact stars induced by Thomas-Fermi dark matter with null complexity in f(T) gravity","authors":"S.K. Maurya , Jitendra Kumar , Sweeti Kiroriwal","doi":"10.1016/j.jheap.2024.09.012","DOIUrl":"10.1016/j.jheap.2024.09.012","url":null,"abstract":"<div><div>Our goal in this work is to find an anisotropic solution for a self-bound compact object composed of dark matter with a null complexity factor in <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>-gravity theory. We use a well-known gravitational decoupling via complete geometric deformation (CGD) technique to examine the role of decoupling parameters on the configuration of compact objects. Initially, we derive the null complexity condition for <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>-gravity decoupled system which leads to a relation between gravitational potentials. Next, we apply the CGD approach to split the decoupled system into two subsystems. The initial system refers to a pure <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> gravity system consisting of an isotropic fluid distribution, where the isotropy criterion is equivalent to the condition in Einstein's gravity. The solution of the first system is solved through the Vlasenk-Pronin space-time metrics while the second system associated with the deformation function is solved by the density constraints method by mimicking a new source with Thomas-Fermi dark matter density profile that generates the anisotropy in the decoupled system. The physical validity of the anisotropic solution is checked by the graphical analysis of the pressure, density, energy, and stability conditions. We have also shown the effect of torsion and decoupling parameters on the configuration of anisotropic compact objects. The energy exchange (Δ<em>E</em>) of fluid distribution is also discussed. We found that Δ<em>E</em> is positive throughout the stellar configuration, which implies that energy is effectively transmitted to the surrounding environment.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 194-209"},"PeriodicalIF":10.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui-Yan Chen , Faisal Javed , G. Mustafa , S.K. Maurya , Saibal Ray
{"title":"Dual effect of string cloud and dark matter halos on particle motions, shadows and epicyclic oscillations around Schwarzschild black holes","authors":"Rui-Yan Chen , Faisal Javed , G. Mustafa , S.K. Maurya , Saibal Ray","doi":"10.1016/j.jheap.2024.09.010","DOIUrl":"10.1016/j.jheap.2024.09.010","url":null,"abstract":"<div><div>In this work, we study the particle dynamics, shadows and quasi-periodic oscillations around the Schwarzschild black hole with three different dark matter halos and string cloud parameters. The motion of particles is considered with the string cloud parameter <em>α</em> and investigated for massive and massless particles. The photon orbits and inner stable circular orbits of these black holes are obtained from the effective potential. The black hole shadows are calculated using three different dark matter halos. The shadow radius of these black holes increases compared to a pure Schwarzschild black hole for different values of the string cloud parameter. Further, quasi-periodic oscillations are also discussed in the current analysis. Our study examines how the radial profiles of orbital and radial harmonic oscillation frequencies change with the string cloud parameter. This study examines the major properties of test particle's quasi-periodic oscillations near stable circular orbits in the black hole equatorial plane. Our findings indicate that observational tests for black holes influenced by dark matter halos and cloud strings are also feasible and viable.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 172-186"},"PeriodicalIF":10.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conservative wormholes in generalized κ(R,T)- function","authors":"Ksh. Newton Singh , G.R.P. Teruel , S.K. Maurya , Tanmoy Chowdhury , Farook Rahaman","doi":"10.1016/j.jheap.2024.09.009","DOIUrl":"10.1016/j.jheap.2024.09.009","url":null,"abstract":"<div><div>We present an exhaustive study of wormhole configurations in <span><math><mi>κ</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity with linear and non-linear functions. The model assumed Morris-Thorne spacetime where the redshift and shape functions linked with the matter contain and geometry of the spacetime through non-covariant conservation equation of the stress-energy tensor. The first solution was explored assuming a constant redshift function that leads to a wormhole (WH) which is asymptotically non-flat. The remaining solutions were explored in two cases. Firstly, assuming a linear equation of state <span><math><mi>p</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mi>ω</mi><mi>ρ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> along with different forms of <span><math><mi>κ</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>-function. This proved enough to derive a shape function of the form <span><math><mi>b</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>(</mo><mfrac><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>r</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mi>ω</mi></mrow></msup></math></span>. Secondly, by assuming specific choices of the shape function consistent with the wormhole configuration requirements. All the solutions fulfill flare-out condition, asymptotically flat and supported by phantom energy. Further, the embedding surface and its revolution has been generated using numerical method to see how the length of the throat is affected of the coupling parameters through <span><math><mi>κ</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> function. At the end, we have also calculated the average null energy condition, which is satisfied by all the WH models signifying minimum exotic matter is required to open the WH throats.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 132-145"},"PeriodicalIF":10.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}