V. Dinesh Reddy, G. Subrahmanya V. R. K. Rao, Marco Aiello
{"title":"Energy efficient resource management in data centers using imitation-based optimization","authors":"V. Dinesh Reddy, G. Subrahmanya V. R. K. Rao, Marco Aiello","doi":"10.1186/s42162-024-00370-y","DOIUrl":"10.1186/s42162-024-00370-y","url":null,"abstract":"<div><p>Cloud computing is the paradigm for delivering streaming content, office applications, software functions, computing power, storage, and more as services over the Internet. It offers elasticity and scalability to the service consumer and profit to the provider. The success of such a paradigm has resulted in a constant increase in the providers’ infrastructure, most notably data centers. Data centers are energy-intensive installations that require power for the operation of the hardware and networking devices and their cooling. To serve cloud computing needs, the data center organizes work as virtual machines placed on physical servers. The policy chosen for the placement of virtual machines over servers is critical for managing the data center resources, and the variability of workloads needs to be considered. Inefficient placement leads to resource waste, excessive power consumption, and increased communication costs. In the present work, we address the virtual machine placement problem and propose an Imitation-Based Optimization (IBO) method inspired by human imitation for dynamic placement. To understand the implications of the proposed approach, we present a comparative analysis with state-of-the-art methods. The results show that, with the proposed IBO, the energy consumption decreases at an average of 7%, 10%, 11%, 28%, 17%, and 35% compared to Hybrid meta-heuristic, Extended particle swarm optimization, particle swarm optimization, Genetic Algorithm, Integer Linear Programming, and Hybrid Best-Fit, respectively. With growing workloads, the proposed approach can achieve monthly cost savings of €201.4 euro and <span>(hbox {CO}_2)</span> Savings of 460.92 lbs <span>(hbox {CO}_2)</span>/month.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00370-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative assessment of the scientific structure of biomass-based hydrogen from a cross-domain perspective","authors":"Kunihiko Okuda, Hajime Sasaki","doi":"10.1186/s42162-024-00399-z","DOIUrl":"10.1186/s42162-024-00399-z","url":null,"abstract":"<div><p>Biomass-based hydrogen production is an innovative approach for realizing carbon-neutral energy solutions. Despite their promise, both structures differ in terms of the biomass energy domain, which is at the entry point of the technology, and the hydrogen energy domain, which is at the exit point of the technology. In this study, we conducted structural and predictive analyses via cross-domain bibliometric analysis to clarify the differences in the structures and perspectives of researchers across domains and to suggest ways to strengthen collaboration to promote innovation. Our study revealed that the hydrogen energy domain has a balanced impact on realizing a hydrogen society using biomass-based hydrogen production technology, while the biomass energy domain has a strong interest in the process of processing biomass. The results reveal that different communities have different ideas about research, resulting in a divide in the areas to be achieved. This comparative analysis reveals the importance of synergistic progress through interdisciplinary efforts. By filling these gaps, our findings can lead to the development of a roadmap for future research and policy development in renewable energy and highlight the importance of a unified approach to sustainable hydrogen production. The contribution of this study is to provide evidence for the importance of cross-disciplinary cooperation for R&D directors and policy makers.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00399-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An investigation on energy-saving scheduling algorithm of wireless monitoring sensors in oil and gas pipeline networks","authors":"Zhifeng Ma, Zhanjun Hao, Zhenya Zhao","doi":"10.1186/s42162-024-00412-5","DOIUrl":"10.1186/s42162-024-00412-5","url":null,"abstract":"<div><p>With the rapid development of the oil and gas industry, monitoring the safety and efficiency of pipeline networks has become particularly important. In this context, Wireless Sensor Networks (WSNs) are widely used for monitoring oil and gas pipelines due to their flexible deployment and cost-effectiveness. However, since sensor nodes typically rely on limited battery power, extending the network’s lifecycle and improving energy utilization efficiency have become focal points of research. Therefore, this paper proposes an energy-saving scheduling algorithm based on transformer networks, aimed at optimizing energy consumption and data transmission efficiency of wireless monitoring sensors in oil and gas pipelines. Firstly, this study designs a deep learning-based Transformer model that learns from historical data on energy consumption patterns and environmental variables to predict the energy and data transmission needs of each sensor node. Secondly, based on the prediction results, this algorithm employs a dynamic scheduling strategy that automatically adjusts the sensor’s operational mode and communication frequency according to the node’s energy status and task urgency. Additionally, we have validated the effectiveness of the proposed algorithm through field tests and simulation experiments. According to the experimental results, our model has higher efficiency in energy saving. Compared with Convolutional Neural Networks, Recurrent Neural Networks and Graph Neural Networks, the total energy consumption of sensor networks under the model scheduling in this paper was reduced by 6.7%, 33.4% and 26.3%, respectively. Our algorithms improve the energy efficiency and stability of the monitoring system and provide important technical support for future intelligent pipeline monitoring systems. We hope this paper will inspire future scientific research in this field.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00412-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing energy-efficient building design: a multi-agent-assisted MOEA/D approach for multi-objective optimization","authors":"Wei Guo, Yaqiong Dong","doi":"10.1186/s42162-024-00406-3","DOIUrl":"10.1186/s42162-024-00406-3","url":null,"abstract":"<div><p>Energy-efficient building design is often challenged by multiple optimization problems due to contradictory objectives that are often hard to balance, so an effective optimization method should be thoroughly considered. Accordingly, a multi-objective evolutionary algorithm is then proposed. Firstly, the multi-agent auxiliary objective evolutionary algorithm for building energy efficiency model is established. According to model result analysis, the proposed algorithm runs fastest for 1640s with the average running time of 1710s in a single-room building, comparing to the least running time of 1680s for the multi-objective particle swarm optimization algorithm. In multi-room buildings, the proposed algorithm runs from 3350s to 3650s, with the average running time of 3500s. In conclusion, the model proposed in this study can comprehensively consider multiple objectives such as energy consumption, cost, comfort, etc. No matter in single-room or multi-room buildings, the model demonstrates superior performance and stability to realize comprehensive optimization of energy conservation design.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00406-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regional differences and catch-up analysis of energy efficiency in China’s manufacturing industry under environmental constraints","authors":"Wei Cao, Xiuhua Wei","doi":"10.1186/s42162-024-00408-1","DOIUrl":"10.1186/s42162-024-00408-1","url":null,"abstract":"<div><p>For coordinated regional growth and the development of high-quality manufacturing, China must narrow its regional energy efficiency gap and catch up inter-regionally. This paper focuses on whether China’s inter-provincial manufacturing energy efficiency has technological diffusion and a catch-up effect and explores its possible influencing factors, which are important for narrowing the differences in China’s manufacturing energy efficiency and promoting the improvement of the overall level of efficiency. Between 2011 and 2020, 30 Chinese manufacturing industries will be evaluated using a non-radial distance function model under environmental conditions. By employing the Dagum Gini coefficient method, regional disparities were analyzed, with hyper-variable density and efficiency discrepancies between regions making a noteworthy contribution. This paper evaluated a catch-up effect by constructing a frontier productivity model that considered the influence of China’s manufacturing energy efficiency. Results show a general rise in energy efficiency, particularly in coastal regions, higher than inland ones. The Gini coefficient of energy efficiency in manufacturing experienced a slight increase; however, when comparing it to the regional efficiency frontier, the catch-up effect and technology diffusion effect of China’s provincial manufacturing energy efficiency become more pronounced when taking into account the national efficiency frontier; the sub-regional manufacturing energy efficiency catch-up effect has different performances; the catch-up and technology diffusion effect is more evident after controlling for Economic development, innovation levels, the environmental regulation, and the proportion of high-energy-consumption output value and other influencing factors.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00408-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Safety management system of new energy vehicle power battery based on improved LSTM","authors":"Kun Zhao, Hao Bai","doi":"10.1186/s42162-024-00411-6","DOIUrl":"10.1186/s42162-024-00411-6","url":null,"abstract":"<div><p>With the development of sustainable economy, new energy materials are widely used in various industries, and many cars also adopt new energy power batteries as power sources. However, it is currently not possible to accurately diagnose faults in power batteries, which results in the safety of power batteries not being guaranteed. To address this issue, this study utilizes the Whale Optimization Algorithm to improve the Long Short-Term Memory algorithm and constructs a fault diagnosis model based on the improved algorithm. The purpose of using this model for fault diagnosis of power batteries is to strengthen the safety management of batteries. This study first conducted experiments on the improved algorithm and obtained an accuracy of 95.3%. The simulation results of the fault diagnosis model showed that the diagnosis time was only 1.2s. The analysis of the power battery showed that after using this model, the safety performance has been improved by 90.1%, while the maintenance cost has been reduced to 20.3% of the original. The above results verify that the fault diagnosis model based on the improved algorithm can accurately diagnose faults in power batteries, thereby improving the safety of power batteries.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00411-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electricity user behavior analysis and marketing strategy based on internet of things and big data","authors":"Wei Ge, Bo Chen","doi":"10.1186/s42162-024-00397-1","DOIUrl":"10.1186/s42162-024-00397-1","url":null,"abstract":"<div><p>This paper examines power user behavior and the design of marketing strategies, using a case study of Smart Community A. We explore how advanced analytical models are used to enhance energy efficiency and user services. First, we apply spectral clustering to refine user segmentation and identify distinct electricity consumption patterns among different groups. Then, the Hidden Markov Model (HMM) analyzes user behavior, uncovering shifts in consumption habits and enabling personalized service offerings. Next, the ARIMA model predicts electricity consumption trends, guiding grid scheduling and resource allocation. Based on these analyses, we develop targeted marketing strategies, such as dynamic pricing and energy-saving incentives, which boost user engagement and reduce energy usage. Through an IoT and big data-driven interactive marketing platform, we enhance user experience and foster a culture of energy conservation. Finally, a feedback mechanism ensures continuous improvement and maximizes the effectiveness of the marketing strategies.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00397-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rasha Elazab, Ahmed Abo Dahab, Maged Abo Adma, Hany Abdo Hassan
{"title":"Enhancing microgrid energy management through solar power uncertainty mitigation using supervised machine learning","authors":"Rasha Elazab, Ahmed Abo Dahab, Maged Abo Adma, Hany Abdo Hassan","doi":"10.1186/s42162-024-00333-3","DOIUrl":"10.1186/s42162-024-00333-3","url":null,"abstract":"<div><p>This study addresses the inherent challenges associated with the limited flexibility of power systems, specifically emphasizing uncertainties in solar power due to dynamic regional and seasonal fluctuations in photovoltaic (PV) potential. The research introduces a novel supervised machine learning model that focuses on regression methods specifically tailored for advanced microgrid energy management within a 100% PV microgrid, i.e. a microgrid system that is powered entirely by solar energy, with no reliance on other energy sources such as fossil fuels or grid electricity. In this context, “PV” specifically denotes photovoltaic solar panels that convert sunlight into electricity. A distinctive feature of the model is its exclusive reliance on current solar radiation as an input parameter to minimize prediction errors, justified by the unique advantages of supervised learning. The performance of four well-established supervised machine learning models—Neural Networks (NN), Gaussian Process Regression (GPR), Support Vector Machines (SVM), and Linear Regression (LR)—known for effectively addressing short-term uncertainty in solar radiation, is thoroughly evaluated. Results underscore the superiority of the NN approach in accurately predicting solar irradiance across diverse geographical sites, including Cairo, Egypt; Riyadh, Saudi Arabia; Yuseong-gu, Daejeon, South Korea; and Berlin, Germany. The comprehensive analysis covers both Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI), demonstrating the model’s efficacy in various solar environments. Additionally, the study emphasizes the practical implementation of the model within an Energy Management System (EMS) using Hybrid Optimization of Multiple Electric Renewables (HOMER) software, showcasing high accuracy in microgrid energy management. This validation attests to the economic efficiency and reliability of the proposed model. The calculated range of error, as the median error for cost analysis, varies from 2 to 6%, affirming the high accuracy of the proposed model.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00333-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The application of multimodal AI large model in the green supply chain of energy industry","authors":"Min Ruan","doi":"10.1186/s42162-024-00402-7","DOIUrl":"10.1186/s42162-024-00402-7","url":null,"abstract":"<div><p>With the accelerated advancements in artificial intelligence and the increasing emphasis on sustainable supply chain management, the integration of multimodal artificial intelligence (AI) into green supply chains has emerged as a critical research frontier. This study delves into the synergistic potential and challenges of combining multimodal AI, which leverages diverse data types such as text, images, and numerical data, to enhance decision-making processes in green supply chains. Through the meticulous design of a data strategy and model framework, this research establishes a sophisticated and efficient data processing and model training pipeline. The experimental results reveal that the comprehensive analysis and fusion of multimodal data significantly improve the prediction accuracy of key supply chain metrics, with observed increases in accuracy and recall rates by 12.4% and 9.8%, respectively. Additionally, the model's limitations are critically assessed, and targeted improvement strategies are proposed. The practical implications of this study are profound, offering actionable insights for the application of multimodal AI in real-world energy sector scenarios. The findings underscore the potential of this technology to optimize operations, reduce environmental impact, and drive sustainable growth in the energy industry.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00402-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient power management strategies for AC/DC microgrids with multiple voltage buses for sustainable renewable energy integration","authors":"Vikas Patel, Vinod Kumar Giri, Awadhesh Kumar","doi":"10.1186/s42162-024-00377-5","DOIUrl":"10.1186/s42162-024-00377-5","url":null,"abstract":"<div><p>This study proposes a distinct coordination control and power management approach for hybrid residential microgrids (MGs). The method enhances the feasibility of hybrid MGs by reducing power loss on ILBCs. The MG has been modeled with solar and wind generators. The MG comprises multiple direct current (DC) and alternating current (AC) sub-microgrids (SMGs) with varying voltage levels. The coordination control and power management strategies for autonomous hybrid MGs with primary and secondary control levels. A novel technique is proposed to ensure seamless and precise power transfer among SMGs while minimizing the constant operation of ILBCs in islanded mode, with a focus on the secondary control level. The study uses MATLAB/Simulink to analyze on-grid, off-grid, and transient mode power transfer among MG. The MG has been operative during transient/faulty conditions. The results indicate that the proposed method demonstrates excellent adaptability in managing power flow.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00377-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}