{"title":"Acknowledgement to Reviewers of Journal of Energy and Power Technology in 2021","authors":"","doi":"10.21926/jept.2201001.","DOIUrl":"https://doi.org/10.21926/jept.2201001.","url":null,"abstract":"The editors of Journal of Energy and Power Technology would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2021. We greatly appreciate the contribution of expert reviewers, which is crucial to the journal's editorial process. We aim to recognize reviewer contributions through several mechanisms, of which the annual publication of reviewer names is one. Reviewers receive a voucher entitling them to a discount on their next LIDSEN publication and can download a certificate of recognition directly from our submission system. Additionally, reviewers can sign up to the service Publons (https://publons.com) to receive recognition. Of course, in these initiatives we are careful not to compromise reviewer confidentiality. Many reviewers see their work as a voluntary and often unseen part of their role as researchers. We are grateful to the time reviewers donate to our journals and the contribution they make.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73612640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Study of Lean-burning Limits of Hydrogen-enriched LPG Intended for Domestic Use","authors":"U. Kahangamage, Yi Chen, C. Leung, Tung Yan Ngai","doi":"10.21926/jept.2202016","DOIUrl":"https://doi.org/10.21926/jept.2202016","url":null,"abstract":"The lean-burning limits of hydrogen-enriched Liquefied Petroleum Gas (LPG) have been studied using a Bunsen burner. The lean-burning limits under different conditions are important design considerations in developing gas-fired domestic appliances. In this study, the lean-burning limits of hydrogen-enriched LPG have been obtained across a wide range of Reynolds numbers (600 to 1800) and H2 volumetric fractions (0% to 25%). The results show that the lean-burning limit is increased, on average, by 4.0% to 7.2% for every 5% increment of H2 volumetric fraction under different Reynolds numbers. A numerical simulation carried out in CHEMKIN using the USC Mech II reaction mechanism, and the observation of flame characteristics show that the increase in lean-burning limit with increasing H2 content is due to the higher burning velocity of LPG-H2 mixtures compared with pure LPG. More fuel is required to offset the effect of increased burning velocity under the same Reynolds number, leading to an increase in the lean-burning limit. To facilitate the visualization of the variation of the lean-burning limit with increasing H2 volume fraction in the mixed fuel at different Reynolds numbers, a lean-burning limit map is developed based on correlations obtained. The results of this study provide reference values for the lean-burning performance of hydrogen-enriched LPG fuel for practical domestic use.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84459346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Synthesis of Germanium-Polypyrrole Composite Nanomaterials in Ionic Liquids for the Fabrication of Lithium-Ion Batteries","authors":"Z. Liu, Li Yang, A. Lahiri, J. Rohan, F. Endres","doi":"10.21926/jept.2201010","DOIUrl":"https://doi.org/10.21926/jept.2201010","url":null,"abstract":"Herein, we report the coating of nanostructured germanium using a polypyrrole (PPy) polymer coat as a composite anode material for the fabrication of lithium-ion batteries. The Ge/PPy composites were synthesized following the direct electrochemical deposition method in an ionic liquid (IL). The results revealed that the coating of PPy on Ge helped realize stable battery cycling and reversible capacities, which were not observed in uncoated Ge. The PPy layers could effectively inhibit side reactions between the electrode and electrolyte. The composition of the solid electrolyte interphase (SEI) formed after lithiation/delithiation cycles were analyzed using the X-ray photoelectron spectroscopy (XPS). Compact SEI layers consisted of decomposed TFSI− anion products such as LiF, Li2S, Li2NS2O4, and Li2CO3 at the Ge-PPy/IL interphase. In contrast, thick SEI layers consisted of not only decomposed TFSI− anion and [Py1,4]+ cation products but also chemically or physically adsorbed IL compounds at the Ge/IL interphase. In addition, the PPy coating could effectively inhibit Ge oxidation, resulting in improved battery capacity.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84484325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Building New Nuclear in Finland: Crises Challenging Core Beliefs around Nuclear Energy","authors":"L. Lounasmeri","doi":"10.21926/jept.2202012","DOIUrl":"https://doi.org/10.21926/jept.2202012","url":null,"abstract":"This paper examines the building of a new nuclear plant as a greenfield operation in Pyhäjoki, Finland. A newly-founded energy company, Fennovoima, was granted a license by the Finnish parliament to build a new power plant in 2010. In the years following this Decision in Principle the project faced several obstacles. Through interviews with key actors, this paper identifies the interests and core beliefs associated with building the plant. It posits that, in Finland, the underlying ideas and values surrounding nuclear energy are deeply embedded in conventional belief, or ‘doxa’-like, and as such are very difficult to challenge or change. Through the lens of this example, it offers suggestions and conclusions concerning the more general social logic behind energy policy decisions in the Finnish context and why nuclear energy has become a hegemonic solution in the Finnish polity. The paper also discusses the viewpoint of geopolitics, which has had historical relevance and has become of paramount concern in the current world situation.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74559189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar Energy Policy for Commercial Buildings Sector: Recommendations for the Indian Scenario","authors":"Meenal Jain, Meenakshi Mital, M. Syal","doi":"10.21926/jept.2202014","DOIUrl":"https://doi.org/10.21926/jept.2202014","url":null,"abstract":"India is a rapidly developing nation and is heavily dependent on fossil fuels. Renewable energy presents an attractive solution to the growing challenges concerning energy needs. Solar energy is abundant in India, and thus, its application and use are rapidly advancing. This study assesses various government initiatives for off-grid Solar Photovoltaic/Solar Water Heating systems for commercial establishments in India and elucidates the need for improvements in their implementation, highlighting the problems in availing the incentives. The study was conducted in six states/Union Territories (UTs) of India, which were selected based on their total installed solar capacity. Questionnaires and secondary sources were used as tools for data collection. Policy recommendations were proposed to improve the policy structure and address the problems reported by the stakeholders. A key feature of the recommended policy framework is the inclusion of stakeholders at every stage to make the process efficient. The findings and recommendations in the study might make the government initiatives for increasing the off-grid installations in the commercial buildings sector more acceptable and easier to implement.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82057867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Open Source LoRa Based, Low-Cost IoT Platform for Renewable Energy Generation Unit Monitoring and Supervisory Control","authors":"Cherechi Ndukwe, M. Iqbal, Jahangir Khan","doi":"10.21926/jept.2201007","DOIUrl":"https://doi.org/10.21926/jept.2201007","url":null,"abstract":"SCADA provides real-time system monitoring by constant communication and data exchange between various system devices to achieve data visualization and logging. Presently, in industrial systems, commercial SCADA systems are being used for data monitoring and control. These systems can be expensive, and as such can only be afforded by select industries. Even at these costs, the commercial SCADA systems face some challenges, which include interoperability and scalability issues. Research has shown that these problems can be solved by the introduction of low-cost materials and open-source software to achieve data monitoring for all levels of processes. This paper proposes an open source, low-cost Internet of Things (IoT)-based SCADA system that employs the IoT architecture for SCADA functions. The proposed system is an improvement to the existing IoT solutions by eliminating cloud based IoT platforms and introducing a single machine system. This solution increases the robustness of the system while reducing costs. The proposed system prototype consists of voltage and current sensors, Arduino Uno microcontroller and Raspberry Pi. The sensors acquire data from the monitored unit. The Arduino Uno receives the data and processes them for transmission to the Raspberry Pi using the LoRa communication technology. At the Raspberry Pi, the local Chirpstack platform processes the data and displays the measured data using the Grafana dashboard for real-time data monitoring, and the data is stored in an InfluxDB database. For system validation purposes, the prototype is designed, developed, and set up to monitor the panel voltage, current and battery voltage of a solar photovoltaic system. The results obtained from the experimental set-up are compared with the test data from physical digital multimeters. The system presented in this paper is a low-cost, open source, scalable and interoperable system. This, therefore, makes the proposed SCADA system an alternative for commercial SCADA systems, especially for select applications. The system proposed in this paper can be deployed to large industrial systems with appropriate upgrades and customization. The main contribution of this research is the design and development of a SCADA system that performs all the functions of a proprietary SCADA system at a very low-cost with scalable and interoperability features which are the main limitations of the traditional SCADA systems.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75065877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Impedance Spectroscopic Studies of PHEV2 form-factor Lithium-ion Cells for Automotive Applications","authors":"Simon Calles, P. Heitjans, Alexander Börger","doi":"10.21926/jept.2202015","DOIUrl":"https://doi.org/10.21926/jept.2202015","url":null,"abstract":"Prismatic PHEV2 form-factor lithium-ion cells with a nominal capacity of 25 Ah (as used for automotive applications) have been studied with electrochemical impedance spectroscopy (EIS). The data was evaluated using electrical equivalent circuits. Mathematical modeling, system identification, and the determination of model parameters of the lithium-ion cell were also carried out. While a study of the influence of temperature and state-of-charge (SOC) performed using pristine lithium-ion cells showed a nonlinear relationship between temperature and the fits for different RC elements. Finally, the interdependency of parameters determined by EIS has been demonstrated for cells in different aging regimes (cyclic vs. non-cyclic aging) relevant for automotive requirements use cases.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88110365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harvesting the Potential of CO2 before it is Injected into Geological Reservoirs","authors":"T. Phuoc, M. Massoudi","doi":"10.21926/jept.2104050","DOIUrl":"https://doi.org/10.21926/jept.2104050","url":null,"abstract":"To store CO2 in geological reservoirs, expansion valves have been used to intentionally release supercritical CO2 from high-pressure containers at a source point to lower-pressure pipelines and transport to a selected injection site. Using expansion valves, however, has some shortcomings: (i) the fluid potential, in the form of kinetic energy and pressure which can produce mechanical work or electricity, is wasted, and (ii) due to the Joule-Thomson cooling effect, the reduction in the temperature of the released CO2 stream might be so dramatic that it can induce thermal contraction of the injection well causing fracture instability in the storage formation. To avoid these problems, it has been suggested that before injection, CO2, should be heated to a temperature slightly higher than that of the reservoir. However, heating could increase the cost of CO2 injection. This work explores the use of a Tesla Turbine, instead of an expansion valve, to harvest the potential of CO2, in the form of its pressure and kinetics, to generate mechanical work when it is released from a high-pressure container to a lower-pressure transport pipeline. The goal is to avoid throttling losses and to produce useful power because of the expansion process. In addition, due to the friction between the gas and the turbine disks, the expanded gas temperature reduction is not as dramatic as in the case when an expansion valve is used. Thus, as far as CO2 injection is concerned, the need for preheating can be minimized.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90781441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Drag Forces on a Taylor Bubble Rising Steadily in Vertical Pipes","authors":"A. Kendoush","doi":"10.21926/jept.2104048","DOIUrl":"https://doi.org/10.21926/jept.2104048","url":null,"abstract":"By the adoption of a drag-buoyancy equality model, analytical solutions were obtained for the drag coefficients (CD) of Taylor bubbles rising steadily in pipes. The obtained solutions were functions of the geometry of the Taylor bubble and the gas volume fraction. The solutions were applicable at a wide range of Capillary numbers. The solution was validated by comparison with experimental data of other investigators. All derived drag formulas were subject to the condition that Bond number >4, for air-water systems.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72886942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reactor Design for Biogas Production-A Short Review","authors":"S. Banerjee, N. Prasad, Sivamani Selvaraju","doi":"10.21926/jept.2201004","DOIUrl":"https://doi.org/10.21926/jept.2201004","url":null,"abstract":"Biogas is an alternative to gaseous biofuels and is produced by the decomposition of biomass from substances such as animal waste, sewage sludge, and industrial effluents. Biogas is composed of methane, carbon dioxide, nitrogen, hydrogen, hydrogen sulfide, and oxygen. The anaerobic production of biogas can be made cheaper by designing a high throughput reactor and operating procedures. The parameters such as substrate type, particle size, temperature, pH, carbon/nitrogen (C/N) ratio, and inoculum concentration play a major role in the design of reactors to produce biogas. Multistage systems, batch, continuous one-stage systems, and continuous two-stage systems are the types of digesters used in the industry for biogas production. A comprehensive review of reactor design for biogas production is presented in the manuscript.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72983378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}