Atul Harmukh, Abhilash Singh, Praveen Kumar, Sanjeev K. Verma, Pal Dinesh Kumar, S. G. Ganpule
{"title":"Mechanical analysis of helmeted headforms under ballistic impact with implications in performance evaluation of ballistic helmets","authors":"Atul Harmukh, Abhilash Singh, Praveen Kumar, Sanjeev K. Verma, Pal Dinesh Kumar, S. G. Ganpule","doi":"10.3389/fmech.2023.1270905","DOIUrl":"https://doi.org/10.3389/fmech.2023.1270905","url":null,"abstract":"Behind helmet blunt trauma is a significant health concern in modern warfare. The ballistic response of the human head under ballistic impact is highly sought. Towards this end, we conducted ballistic experiments on three different headforms. The following headforms were considered: a) National Institute of Justice based rigid headform, b) Hybrid-III based flexible headform, and c) head model based headform. Headforms b, c were assembled with the Hybrid-III neck. An advanced combat helmet was fitted to the headforms. Helmet-head assembly was subjected to a 9 mm × 19 mm full metal jacket projectile having velocities of 430 ± 15 m/s. The response of the head surrogate in the front, back, side, and crown orientations was studied. Back face deformation (BFD), head kinematics, and intracranial pressures in headforms were measured. In addition, equivalent stress and maximum principal strain in the brain were obtained using concurrent finite element simulations. Results suggest that both local (i.e., due to the localized crushing of the helmet) and global (i.e., due to the bulk motion of the helmet-head parenchyma) responses were dominant under investigated ballistic impacts. Further, the type of the headform affected the biomechanical response. As compared to the rigid headform, a statistically significant increase in head kinematics was observed with the flexible headforms; changes in BFD were statistically insignificant. The orientation dependent responses have been observed. Overall, these results provide novel insights regarding the ballistic response of the headforms with the combat helmet and underscore critical considerations during the ballistic evaluation of helmets.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"28 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139263832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kirigami-inspired deployable mechanisms with a type-preserving feature and controllable Poisson’s ratio","authors":"Jianzhi Wang, Hang Xiao, Xilun Ding, Shengnan Lyu","doi":"10.3389/fmech.2023.1225682","DOIUrl":"https://doi.org/10.3389/fmech.2023.1225682","url":null,"abstract":"A spatial deployable mechanism is capable of adapting to different operating requirements by adjusting its shape and size. However, most current deployable mechanisms fail to maintain the type of their reflective surface during the folding process, which limits their ability to adjust the optimal operating frequency. To address this issue, this paper presents a novel design of a deployable mechanism with a type-preserving feature inspired by kirigami techniques. By preserving the type of its reflective surface, this mechanism allows for the adjustment of the optimum operating frequency according to specific requirements. This makes it well-suited for deployment on commercial satellites that undergo constant mission variations. The mechanism is constructed using porous kirigami cells, ensuring that the type of the working surface is maintained throughout the deployment process. The construction of deployable units and networks based on porous cells is also discussed. Additionally, deployable mechanisms with controllable Poisson’s ratios are developed. The kinematics of the mechanism are analyzed to verify the type-preserving characteristics. Finally, four case studies are conducted to illustrate and validate the proposed design and analysis.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"92 4","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139268458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study on the nozzle-shape effect on liquid jet characteristics in gaseous crossflow","authors":"B. Jalili, P. Jalili, F. Ommi, D. D. Ganji","doi":"10.3389/fmech.2023.1207894","DOIUrl":"https://doi.org/10.3389/fmech.2023.1207894","url":null,"abstract":"This study presents experimental findings on the crossflow injection of a liquid jet into a gaseous flow. Crossflow injection is favored over co-axial trajectory injection because of its potential to enhance atomization, promote the formation of smaller droplets, and improve injection parameters, mainly due to the differing trajectory of fuel injection within the transverse airflow. The study’s experiments use two circular and four elliptical nozzles with varying aspect ratios. The research investigates the influential factors that affect the trajectory and breakup of the liquid jet, specifically analyzing the impact of the nozzle geometry, Weber number, and momentum ratio of the liquid jet to the air crossflow. Additionally, equations are derived to describe the trajectory for both elliptical and circular nozzles. The relationship between breakup height and length is explored, with the observation that breakup length remains constant for both nozzle shapes. Furthermore, the study investigates the analysis of breakup regimes and establishes a direct correlation between the Weber number and the breakup regime. Column, bag, and multimode breakup are observed at Weber numbers 4, 38, and 82, respectively. The experimental error for the liquid jet trajectory obtained is approximately 2%. Importantly, the experimental results align with previously published experimental and numerical data, confirming the validity and reliability of the findings.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"15 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139274585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric ducted fan controller and self-balancing system for two-wheeler motorbike","authors":"Mamon M. Horoub, Ammar Alzaydi, A. A. Hanieh","doi":"10.3389/fmech.2023.1284879","DOIUrl":"https://doi.org/10.3389/fmech.2023.1284879","url":null,"abstract":"A new method of achieving self-balancing for two-wheeled vehicles is described in this paper. The structure is characterized by the presence of two electric ducted fans which are designed to blow air in the opposite direction of the fall in order to maintain equilibrium. Due to their ability to move in two degrees of freedom, Electric Ducted Fans motors are able to propel and lower the weight of the two-wheeler while remaining stable. It is described how the Proportional-Integral-Differential arducopter controller works, which employs an Inertial Measurement Unit sensor and a nonlinear complementary filter on particular orthogonal arrangements to determine the lean angles at any specific time, as well as a feedback loop to maintain the system at the required upright 0° lean angle at all times. Following that, the proposed Proportional-Integral-Differential controller is tested on a small-scale model in order to verify the proposed idea of self-balancing using Electric Ducted Fans motors. Mathematical modeling for the small-scale model has been calculated. Then the response of the Proportional-Integral-Differential controller for lean angle against external disturbances is tested theoretically and experimentally. After obtaining positive outcomes on the small-scale model, the concept that has been suggested is evaluated versus a large-scale design (motorbike) by constructing the mechanical and electrical components. The process breaks down into three primary phases: design and fabrication of mechanical parts, design of electrical components, and design of control systems. The innovative aspect of this work is the introduction of a method for achieving self-balancing in two-wheeled vehicles using electric ducted fans.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"8 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139272836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-temperature tribological properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process","authors":"Maziar Ramezani, Zaidi Mohd Ripin","doi":"10.3389/fmech.2023.1289450","DOIUrl":"https://doi.org/10.3389/fmech.2023.1289450","url":null,"abstract":"This paper discusses the experimental procedure and results of an investigation into the sliding wear behavior of Co-Cr-Mo specimens produced by selective laser melting (SLM) process. The sliding wear tests were carried out with different normal loads, sliding frequencies, and temperatures. The results showed that the coefficient of friction decreased as the applied normal load increased due to the temperature effect. The wear rate increased significantly at higher loads due to increased surface stresses. Testing the specimens at elevated temperatures resulted in a decrease in COF due to thermal softening and the formation of an oxide layer on the surface. The wear rate increased for specimens tested at 200°C due to a decrease in hardness and strength, but the wear rate decreased at higher temperatures due to the protective effect of the oxide layer. The obtained results showed the SLM-printed Co-Cr-Mo alloy exhibited good mechanical properties and wear resistance, making it a promising material for tribological applications, especially at elevated temperatures.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":" August","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Letizia, Peter Brugger, Nicola Bodini, Raghavendra Krishnamurthy, Andrew Scholbrock, Eric Simley, Fernando Porté-Agel, Nicholas Hamilton, Paula Doubrawa, Patrick Moriarty
{"title":"Characterization of wind turbine flow through nacelle-mounted lidars: a review","authors":"Stefano Letizia, Peter Brugger, Nicola Bodini, Raghavendra Krishnamurthy, Andrew Scholbrock, Eric Simley, Fernando Porté-Agel, Nicholas Hamilton, Paula Doubrawa, Patrick Moriarty","doi":"10.3389/fmech.2023.1261017","DOIUrl":"https://doi.org/10.3389/fmech.2023.1261017","url":null,"abstract":"This article provides a comprehensive review of the most recent advances in the planning, execution, and analysis of inflow and wake measurements from nacelle-mounted wind Doppler lidars. Lidars installed on top of wind turbines provide a holistic view of the inflow and wake characteristics required to characterize and optimize wind turbine performance, carry out model validation and calibration, and aid in real-time control. The need to balance the enhanced capabilities and limitations of lidars compared to traditional anemometers inspired a broad variety of approaches for scan design and wind reconstruction, which we discuss in this review. We give particular emphasis to identifying common guidelines and gaps in the available literature with the aim of providing an exhaustive picture of the state-of-the-art techniques for reconstructing wind plant flow using nacelle-mounted lidars.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"30 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135972990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter M. Lee, Carlos Sanchez, Cole Frazier, Andrew Velasquez, Travis Kostan
{"title":"Tribological evaluation of electric vehicle driveline lubricants in an electrified environment","authors":"Peter M. Lee, Carlos Sanchez, Cole Frazier, Andrew Velasquez, Travis Kostan","doi":"10.3389/fmech.2023.1215352","DOIUrl":"https://doi.org/10.3389/fmech.2023.1215352","url":null,"abstract":"Electrification continues to permeate the automotive industry, with future projections showing an exponential growth in the market share for both light and heavy-duty applications. Existing test methods for automotive applications were developed to model internal combustion engine vehicles and drivelines and are not appropriate for electric drivelines that experience stray electric currents. Tribometers can be used to evaluate friction and wear on modeled surfaces simulating in-vehicle operation. In this work, a commercially available tribometer was modified to isolate an electrical input into a tribological contact. After necessary modifications to the tribometer, a test matrix was completed for investigating different temperatures, load conditions, speed conditions, voltage input types, frequencies of AC signal, and shapes of AC signal. These parameters were tested on three lubricants—two typical automatic transmission fluid formulations and gear oil used in differential applications. Friction was measured throughout the tests, and wear scar width was measured at the end of each test. Results indicated that temperature, DC voltage, AC frequency, lubricant, and test profile had statistically significant differences in wear scar width. For electrical parameters, AC frequency produced different results from DC voltage when no voltage was applied. This significance applied to only one lubricant, with the other two lubricants having mixed results.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"35 13","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayavelu Udaya Prakash, Subramani Ananth, Sunder Jebarose Juliyana, Robert Cep, Nitin Khedkar, Sachin Salunkhe, Emad Abouel Nasr, Ali Kamrani
{"title":"Parametric optimization of wear parameters of hybrid composites (LM6/B4C/fly ash) using Taguchi technique","authors":"Jayavelu Udaya Prakash, Subramani Ananth, Sunder Jebarose Juliyana, Robert Cep, Nitin Khedkar, Sachin Salunkhe, Emad Abouel Nasr, Ali Kamrani","doi":"10.3389/fmech.2023.1279481","DOIUrl":"https://doi.org/10.3389/fmech.2023.1279481","url":null,"abstract":"Wear is prominent in sliding components, so tribology property plays a major role in automotive as well as in the aerospace industries. In this work, Aluminium alloy LM6/B 4 C/Fly Ash hybrid composites with three different weight percentages of reinforcement were fabricated using the low-cost stir casting technique, and the experiments were conducted based on the Design of Experiments (DoE) approach and optimized using Taguchi’s Signal to noise ratio (S/N) analysis. The analysis was conducted with process parameters like Sliding Speed (S), Sliding distance (D), load (L) and reinforcement percentage (R %), the responses are Coefficient of Friction (COF) and Specific wear rate (SWR). Aluminum alloy reinforced with 9 wt% hybrid (LM6 + 4.5% B 4 C + 4.5% Fly Ash) has a low density and high hardness compared with other composites and base alloys. The optimum parameters for obtaining minimum SWR are S - 1 m/s, D - 500 m, L - 45 N, and R% - 6 wt% Hybrid (3% Fly ash and 3% boron carbide). The optimum parameters for obtaining minimum COF are S - 1.5 m/s, D - 500 m, L - 30 N, and R% −9 wt% Hybrid (4.5% Fly ash and 4.5% boron carbide). Load (28.34%) is the most significant parameter for obtaining minimum SWR, and DL (31.62%) for obtaining minimum COF. SEM images of the worn pins show the various wear mechanisms of the AMCs. The hybrid composite produced is new and these may be used for piston liner and brake pad applications.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"21 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Buckling response of functionally graded multilayer graphene platelet-reinforced composite plates with circular/elliptical cutouts supporting on an elastic foundation under normal and shear loads","authors":"Amin Kalhori, Mohammad Javad Bayat, Kamran Asemi","doi":"10.3389/fmech.2023.1293713","DOIUrl":"https://doi.org/10.3389/fmech.2023.1293713","url":null,"abstract":"The present article deals with the buckling response of functionally graded multilayer graphene platelet-reinforced composite (FG-GPL RC) rectangular plates with circular/elliptical cutouts resting on a Winkler-type elastic foundation under uniaxial and biaxial normal and shear loads. Rule of mixtures and the Halpin–Tsai approach are applied to obtain the effective Poisson’s ratio, mass density, and elastic modulus of the reinforced composite. The governing equations are developed by applying the third-order shear deformation plate theory. Then, the finite element procedure is used to solve the problem. Four different types of graphene platelet distributions, namely, UD, FG-X, FG-V, and FG-O, are considered. A broad range of factors such as plate aspect ratio, plate slenderness ratio, applying uniaxial and biaxial normal and shear loads to the plate, several Winkler elastic foundation stiffness parameters, different displacement boundary conditions, the effect of size of the circular cutout and orientation of the elliptical cutout, and the influence of GPL weight fraction are discussed in several tabular and graphical data in detail.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"66 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frictional performance of chemically modified cottonseed-based fossil-free biolubricant oil in a sliding tribopair","authors":"I. S. S. Ghumman, S. K. Afaq, Ali Usman","doi":"10.3389/fmech.2023.1281406","DOIUrl":"https://doi.org/10.3389/fmech.2023.1281406","url":null,"abstract":"In this study, the tribological properties of a green lubricant synthesized from cottonseed oil through a two-step transesterification process are investigated, with a specific focus on the maximum throughput of the second step that involves the reaction of cottonseed methyl ester with 2-ethyl-1-hexanol alcohol and a titanium isopropoxide (TIS) catalyst. The research centers on evaluating the physiochemical characteristics of this biolubricant and comparing them with those of commercial oil (5W30) and the ISO VG40 standard. Furthermore, the influence of crucial process variables, such as temperature, pressure, reaction time, and TIS catalyst concentration, is examined by analyzing variance in experimental data. Fourier transform infrared (FTIR) analysis is employed to identify functional groups, particularly emphasizing the impact of temperature and reaction time. By optimizing the second transesterification process under specific conditions (pressure = 19.42 mmHg, temperature = 175°C, catalyst concentration = 0.63%, and reaction time = 4.0 h), a cottonseed oil-based biolubricant is successfully produced, exhibiting properties comparable to those of commercial mineral lubricants. Notably, the findings reveal significant enhancements in the coefficient of friction (CoF) with a 49% reduction and wear resistance with a maximum 19% reduction. This study contributes valuable insights into optimizing biolubricant production derived from cottonseed oil through two-step transesterification, emphasizing its novel potential in improving frictional and wear characteristics.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135265671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}