Iraqi Journal of Chemical and Petroleum Engineering最新文献

筛选
英文 中文
Calibrating the Reservoir Model of the Garraf Oil Field 校准加拉夫油田储层模型
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-12-30 DOI: 10.31699/ijcpe.2023.4.14
Sarah Kamil Abdulredha, Mohammed Saleh Al-jwad
{"title":"Calibrating the Reservoir Model of the Garraf Oil Field","authors":"Sarah Kamil Abdulredha, Mohammed Saleh Al-jwad","doi":"10.31699/ijcpe.2023.4.14","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.4.14","url":null,"abstract":"History matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir model integrates a variety of inputs, including well position and trajectory, well completion data, initial reservoir condition, and daily production/injection rates. The validation process involves comparing the original oil reserve derived from the geological model with the one obtained from the dynamic reservoir model. To achieve an accurate history matching, the calibration process has been performed by aligning observed data with simulation results. This involves focusing on production/injection data for each well and pressure measurements for selected wells. Notably, horizontal permeability is identified as a critical parameter in this study, which is adjusted iteratively to achieve a robust match for individual wells and the entire field. Thus, Successful calibration facilitates the subsequent stage and future scenarios allowing for the exploration of different conditions to predict the performance of the Garraf oilfield. This comprehensive approach improves the reliability of reservoir predictions, facilitating well-informed decision-making in reservoir management.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139140195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of Lead Ions from Wastewater by using a Local Adsorbent from Charring Tea Wastes 用炭化茶渣局部吸附剂去除废水中的铅离子
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.9
Zahraa Kadhim Abd AL-Hussain, Hayder M. Abdul-Hameed
{"title":"Removal of Lead Ions from Wastewater by using a Local Adsorbent from Charring Tea Wastes","authors":"Zahraa Kadhim Abd AL-Hussain, Hayder M. Abdul-Hameed","doi":"10.31699/ijcpe.2023.3.9","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.9","url":null,"abstract":"Adsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three models (Langmuir, Freundlich, and Temkin) have been used to show which is the best operation. It was found that tea waste has an adsorption capacity (qmax) equal to 2.7972 (mg/g). Equilibrium data fitted well with the Freundlich isotherm because Freundlich assumptions are more suitable to represent the relationship between adsorbent and adsorbate. Two Kinetic Models were applied (first order, and second order) for this study. The adsorption kinetics was investigated and the best fit was achieved by a first-order equation with R2= 95.91%.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D and 3D Modeling of Rock Mechanical Properties of Khasib Formation in East Baghdad Oil Field 东巴格达油田Khasib组岩石力学特性的二维和三维建模
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.4
Hayder Steer, Farqad Hadi, Abdulaziz Ellafi
{"title":"2D and 3D Modeling of Rock Mechanical Properties of Khasib Formation in East Baghdad Oil Field","authors":"Hayder Steer, Farqad Hadi, Abdulaziz Ellafi","doi":"10.31699/ijcpe.2023.3.4","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.4","url":null,"abstract":"Knowing the distribution of the mechanical rock properties and the far field stresses for the field of interest is an important task for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, and subsidence. A major challenge with determining the rock's mechanical properties is that they cannot be directly measured at the borehole. Furthermore, the recovered carbonate core samples for performing measurements are limited and they provide discrete data for specific depths. The purpose of this study is to build 2D and 3D geomechanical models of the Khasib reservoir in the East Baghdad oil field/ Central area. TECHLOG.2015.3 software was used to build the 1D-MEM while Petrel E&P 2018.2 software was used to build the 3D distributions of rock mechanical properties. The Khasib formation has nine units (from K1 to K9). The current results support the evidence that the horizontal stresses are somewhat similar for all layers in the vertical case, but their distribution varies horizontally due to the changes in pore pressures. The pore pressure increases vertically, but its distribution within one layer is different due to the production from different wells. Elastic and strength characteristics of rock, including Young modulus, Poisson ratio, and unconfined compressive strength (UCS), have the same behavior, the highest value of the parameters appeared in the surface layer (K1). This layer is more stiff than other layers that have high porosities and high permeability. The internal friction angle for all formations ranges between 38o-40o, which gives a good harmonization with the limestone friction angle. The 3D distribution of the rock's mechanical properties revealed the carbonate heterogeneity because of its marine depositional environment and complex diagenetic processes. The findings of this study can be used for future geomechanical applications in the East Baghdad oil field including wellbore stability analysis, fault reactivation, and CO2 sequestration.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of Electro-Fenton Process for Phenol Degradation Using Nickel Foam as a Cathode 泡沫镍阴极电fenton法降解苯酚性能研究
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.2
Hind H. Thawini, Rasha H. Salman, Wameath S. Abdul-Majeed
{"title":"Performance of Electro-Fenton Process for Phenol Degradation Using Nickel Foam as a Cathode","authors":"Hind H. Thawini, Rasha H. Salman, Wameath S. Abdul-Majeed","doi":"10.31699/ijcpe.2023.3.2","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.2","url":null,"abstract":"Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by response surface methodology (RSM). According to the results, nickel foam made an excellent choice as cathode material. The pH value was adjusted at 3 and the airflow at 10 L/h for all experiments. It was found that the optimal conditions were current density of 4.23 mA/cm2, Fe2+ dosage of 0.1 mM, and time of 5 h to obtain the removal rates of phenol and chemical oxygen demand (COD) of 81.335% and 79.1%, respectively. The results indicated that time had the highest effect on the phenol and COD removal efficiencies, while the impact of current density was the lowest. The high R2 value of the model equation (98.03%) confirmed its suitability.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136341425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Desulphurization of Simulated Oil Using SAPO-11 with CNT's as Adsorbent: A Kinetic Study 碳纳米管吸附剂SAPO-11对模拟油的脱硫动力学研究
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.7
Gaith K. Jabaar, Hayder A. Al-Jendeel, Yasir Ali Alsheikh
{"title":"Desulphurization of Simulated Oil Using SAPO-11 with CNT's as Adsorbent: A Kinetic Study","authors":"Gaith K. Jabaar, Hayder A. Al-Jendeel, Yasir Ali Alsheikh","doi":"10.31699/ijcpe.2023.3.7","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.7","url":null,"abstract":"In this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 containing 7.5% CNT was 179.54 m2/g, and the pore volume was 0.317 cm3/g. However, the surface area of SAPO-11 containing 0% CNT was 125.311 m2/g, and pore volume was 0.275 cm3/g, while nanoparticles with an average particle diameter of 24.8 nm were obtained. Then, the prepared SAPO-11 was used in the oxidative desulfurization process. The oxidative desulfurization was studied using several factors affecting desulfurization efficiency, such as time (40, 60, 80, 100, and 120) min, amount of MO/SAPO-11 (0.3, 0.4, 0.5, 0.6, and 0.7) g/100 ml of simulated oil (100 ppm of dibenzothiophene), the amount of hydrogen peroxide (4ml) oxidizer/100 ml of simulated oil, and the temperature ranges from (40, 50, 60, 70, and 80 °C). The results showed that an increase in MO/SAPO-11 led to an increase in desulfurization. The best removal percentage for sulfur content was 92.79%, obtained at 70 °C and 0.6 g of MO/SAPO-11 containing 7.5% CNT, and the removal was 82.34% at 0% CNT and the same other conditions. While the equilibrium was achieved after 100 min. The results revealed that Freundlich's model described the adsorption of sulfur compounds better than Langmuir's, where the R2 of the Freundlich model was 0.9979 and the R2 of the Langmuir model was 0.9554.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136341908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Characterization of a Hierarchically Porous Zeolite-Carbon Composite from Economical Materials and Green Method 经济环保材料制备分级多孔沸石-碳复合材料及其表征
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.3
Nargis H. Ibrahim, Sama M. Al-Jubouri, Abdullatif Alfutimie
{"title":"Preparation and Characterization of a Hierarchically Porous Zeolite-Carbon Composite from Economical Materials and Green Method","authors":"Nargis H. Ibrahim, Sama M. Al-Jubouri, Abdullatif Alfutimie","doi":"10.31699/ijcpe.2023.3.3","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.3","url":null,"abstract":"A hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, thermogravimetric analysis, N2-adsorption/desorption isotherm, and point of zero charges. The results showed that the composite had a surface area of 208.463 m2/g, a pore volume of 0.122 cm3/g, distinct morphology, and functional groups. Also, its pHpzc was 6.9 above which its surface has a positive charge and below 6.9 it is charged negatively. This property determines the composite sorption property in the removal of pollutants from wastewater.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swab – Surge Pressure Investigation, and the Influence Factors, Prediction and Calculation (Review) 抽汲-喘振压力调查、影响因素、预测和计算(回顾)
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.14
Amel Habeeb Assi
{"title":"Swab – Surge Pressure Investigation, and the Influence Factors, Prediction and Calculation (Review)","authors":"Amel Habeeb Assi","doi":"10.31699/ijcpe.2023.3.14","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.14","url":null,"abstract":"Surge pressure is supplemental pressure because of the movement of the pipes downward and the swab pressure is the pressure reduction as a result of the drill string's upward movement. Bottom hole pressure is reduced because of swabbing influence. An Investigation showed that the surge pressure has great importance for the circulation loss problem produced by unstable processes in the management pressure drilling (MPD) actions. Through Trip Margin there is an increase in the hydrostatic pressure of mud that compensates for the reduction of bottom pressure due to stop pumping and/or swabbing effect while pulling the pipe out of the hole. This overview shows suggested mathematical/numerical models for simulating surge pressure problems inside the wellbore with adjustable cross-section parts. The developed models require simple input data that may be gotten from the rig location. Pressure variations due to Swabs and surge has been a major concern in the oil industry for numerous years. If the pressure variations become moreover extraordinary, this leads to formation fracture, and formation influx principal to a kick. In the worst circumstances and situations that kick principal on the blowout and put crew life in hazard. By using theoretical investigation and experimental consequences, it established that the surge pressure is a function of the well depth, the drilling tools combination, the diameter of the wellbore, drilling mud properties, drilling pipe operation speed, and acceleration of the drill pipe movement, etc. This review focuses and investigates the essential theory and on software that computes the pressure variations in different flow conditions to predict surge and swab pressure values.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sand Modified with Nanoparticles of Calcium, Aluminum, and CTAB in the Form of Layered Double Hydroxide for Removing of Amoxicillin from Groundwater 层状双氢氧化物形式的钙、铝和CTAB纳米颗粒改性砂去除地下水中阿莫西林的研究
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.8
Zainab A. H. Ahmed, Ayad A. H. Faisal
{"title":"Sand Modified with Nanoparticles of Calcium, Aluminum, and CTAB in the Form of Layered Double Hydroxide for Removing of Amoxicillin from Groundwater","authors":"Zainab A. H. Ahmed, Ayad A. H. Faisal","doi":"10.31699/ijcpe.2023.3.8","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.8","url":null,"abstract":"The addition of new reactive sites on the surface area of the inert sand, which are represented by layered double hydroxide nanoparticles, is the primary goal of this work, which aims to transform the sand into a reactive material. Cetyltrimethylammonium bromide (CTAB) surfactant is used in the reaction of calcium extracted from solid waste-chicken eggshells with aluminum prepared from the cheapest coagulant-alum. By separating amoxicillin from wastewater, the performance of coated sand named as \"sand coated with (Ca/Al-CTAB)-LDH\" was evaluated. Measurements demonstrated that pH of 12 from 8, 9, 10, 11, and 12, CTAB dosage of 0.05 g from 0, 0.03, 0.05, and 0.1 g, ratio of Ca/Al of 2 from 1, 2, 3, and 4, and mass of sand of 1 g/50 mL from 0.5, 1, 1.5, 2, and 2.5 g/50 mL are the optimal manufacturing conditions for coated sand to guarantee an antibiotic removal efficiency greater than 80. After planting the LDH nanoparticles, characterization analyses revealed that the generation of a plate-like layer composed of loosely aggregated micrometric plates had significantly altered the structure of sand. Finally, as the sorbent mass increased as well as the flow rate and inlet contaminant concentration (Co) decreased, the longevity of coated sand in the packed column significantly increased. In comparison to the Belter-Cussler-Hu and Yan models, the Thomas-BDST model provides a more accurate simulation of measured breakthrough curves.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"410 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136341276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Gas Lifting Design in Mishrif Formation of Halfaya Oil Field 哈法亚油田Mishrif组气举设计优化
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.5
Safwan Riyadh Ahmed, Dhifaf Jaafar Sadeq, Hisham Ben Mahmud
{"title":"Optimization of Gas Lifting Design in Mishrif Formation of Halfaya Oil Field","authors":"Safwan Riyadh Ahmed, Dhifaf Jaafar Sadeq, Hisham Ben Mahmud","doi":"10.31699/ijcpe.2023.3.5","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.5","url":null,"abstract":"The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of gas allocation was executed to maximize oil production rates while minimizing the injected gas volume, thus achieving optimal oil production levels at the most effective gas injection volume for the designated network. The utilization of the PIPESIM Optimizer, founded on genetic algorithm principles, facilitated the attainment of these optimal parameters. The culmination of this study yielded an optimal oil production rate of 18,814 STB/d, accompanied by a gas lift injection rate of 7.56 MMscf/d. This research underscores the significance of strategic gas lift design and optimization in enhancing oil recovery and operational efficiency in complex reservoir systems like the Mishrif formation within the Halfaya oil field.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying Average Reservoir Pressure in Multilayered Oil Wells Using Selective Inflow Performance (SIP) Method 采用选择性流入动态(SIP)方法确定多层油井平均储层压力
Iraqi Journal of Chemical and Petroleum Engineering Pub Date : 2023-09-30 DOI: 10.31699/ijcpe.2023.3.11
Shamam Tarq, Dahlia A. Al-Obaidi
{"title":"Identifying Average Reservoir Pressure in Multilayered Oil Wells Using Selective Inflow Performance (SIP) Method","authors":"Shamam Tarq, Dahlia A. Al-Obaidi","doi":"10.31699/ijcpe.2023.3.11","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.3.11","url":null,"abstract":"The downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ rates to surface conditions. Different types of Inflow Performance Relationship (IPR) equations can be used for SIP interpretation, including the Straight-line method, Fetkovitch method, and Laminar Internal Turbulent (LIT) relations. Although the SIP method can be used for single-phase flow, the interpreter can restrict the IPR’s calculations to a particular phase. This research discusses the difficulties in estimating the average reservoir pressure in multilayered reservoir completed wells over their production life. The SIP technique has been applied to some producing wells in the south of Iraq, which are completed in multiple producing reservoirs previously tested with a formation tester to estimate reservoir pressure and other parameters. Two wells are taken in the south of Iraq region, Zubair Oil Field, one with cross flow between perforations and the other well with no cross flow. An average pressure is not calculated for layer A in Well-1, because there is no contribution rate. While the average pressure for Well-1, layer B is 3414.49 psia. Also, the average pressure for Well-2, layer H is not calculated because there is no rate contribution from this layer, and the maximum average pressure was calculated in layer G, which is about 2606.26 psia. It is also found that the presence of cross flow has no effect on SIP calculations.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136342143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信