Daad S. Dawood, Abeer I. Alwared, Sara S. Alkhazraji, Wameath S. Abdul‐Majeed
{"title":"Optimization of Pb (II) Ion Removal from Synthetic Wastewater Using Dead (Chlorophyta) Macroalgae: Prediction by RSM Method","authors":"Daad S. Dawood, Abeer I. Alwared, Sara S. Alkhazraji, Wameath S. Abdul‐Majeed","doi":"10.31699/ijcpe.2024.1.13","DOIUrl":"https://doi.org/10.31699/ijcpe.2024.1.13","url":null,"abstract":"The Pb2+ ions biosorption removal onto dead biomass of Chlorophyta algae is optimized by employing response surface methodology (RSM). Central composite design (CCD)-based experiments were carried out, and RSM was used to evaluate the results. The effects of contact time (15-120min), with pH solution (2-7), initial lead concentration (25-100 mg/L), biomass dose (0.01-1 g/100 mL), agitation speed (100-300 rpm) on the biosorption process were investigated. The optimal conditions of the experimental, data were pH (5), metal concentration (50mg/L), dosage (0.2g/100mL), agitation speed (200 rpm), and contact time of 120 min with constant particle size (63 mm), which gave 98.88% removal efficiency. All the variables and reactions in the biosorption experiments were evaluated using the desirability function to determine the optimal point at which the desired parameters may be attained. The promising results obtained indicate the potential use of Chlorphyta green macroalgae to treat industrial wastewater polluted with toxic metals.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"20 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140364523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Dongmo, Victorine Belomo, I. K. Ngongiah, Ingrid Imelda Ngoumi Tankoua, D. T. Toko, S. Kingni
{"title":"Production Optimization of an Oil Well by Restraining Water Breakthrough","authors":"E. Dongmo, Victorine Belomo, I. K. Ngongiah, Ingrid Imelda Ngoumi Tankoua, D. T. Toko, S. Kingni","doi":"10.31699/ijcpe.2024.1.2","DOIUrl":"https://doi.org/10.31699/ijcpe.2024.1.2","url":null,"abstract":"This study investigates the well named X (for confidential reasons) of the field called Y which initially was productive with the natural energy of the reservoir of the oil in the absence of water. After a few years of production, water began to overflow excessively in the well. The goal of this paper is to maximize the oil production in an oil well X by reducing water ingress. The Pressure Volume Temperature (PVT) data, completion data, and reservoir data are analyzed via PIPESIM and Excel software by using the nodal analysis method to get the well performance and decline curve for predictions. Two scenarios are considered: firstly, to install an electric submersible pump (ESP) to activate the X well and secondly to make a new perforation. The ESP is installed at 11300 ft where the water production flow rate is 5586.264 STB/d and the oil production flow rate is 1396.566 STB/d. The new perforation is installed at 12038 ft where the water production flow rate is 277.1693 STB/d and the oil production flow rate is 5543.387 STB/d. To have the optimal parameters, the sensitivity analysis is applied to the flowline diameter and the wellhead pressure. The optimal parameter values obtained are 308.6128 STB/d for the water production flow rate and 5863.643 STB/d for the oil production flow rate. The new perforation is appropriate because this scenario allows water reduction, oil production maximization, profitability of 98086854 $, and a return on investment in 5 months during 16 years of production.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140362432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hassanain A. Hassan, A. F. Al-Alawy, Muayad Al-shaeli
{"title":"Utilizing Hybrid RO-OARO Systems as New Methods for Desalination Process","authors":"Hassanain A. Hassan, A. F. Al-Alawy, Muayad Al-shaeli","doi":"10.31699/ijcpe.2024.1.3","DOIUrl":"https://doi.org/10.31699/ijcpe.2024.1.3","url":null,"abstract":"The scarcity of fresh water and its essential role in sustaining life on Earth have motivated researchers to seek new, low-cost, scalable technologies for water desalination. Therefore, the osmotically assisted reverse osmosis (OARO) membrane process presents an innovative approach to achieve moderate water recoveries from high salinity water without undergoing a phase change. This work aims to investigate the performance of hybrid RO-OARO systems with various designs and operational parameters on recovery and R%. The hybrid systems were evaluated for 60 minutes at feed concentrations of 3.98-5.54 g/l, applied pressures ranging from 3 to 7 bars, and different membrane types. The results showed that the flux of the hybrid system increased by increasing the pressure and decreased by increasing the feed concentration. The highest recovery value was obtained for the RO-OARO system at an RO pressure of 7 bar and an OARO unit at 3 bar for a 3.98 g/l feed concentration. In contrast, when the reverse osmosis pressure was fixed at 5 bar, and the pressure of the OARO unit increased by 2 bar, the recovery value exceeded by about 6%. Furthermore, the FilmTech membrane showed the highest recovery at 31.7%, while the highest R% was 94.55% for the AquaTec membrane. The RO-OARO-OARO system contributed to increasing both the recovery and rejection values by 11.4 and 2.1%, respectively, compared with the RO-OARO system. The experiments in this study revealed a slight increase in the feed concentration of the reverse osmosis unit, indicating the efficiency of the hybrid systems compared to traditional RO systems.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"2 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140362595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reservoir and Rock Type Characterization: Case Study for Khasib Formation, Southern Iraq","authors":"Alyaa M. Ali, Ayad A. Alhaleem","doi":"10.31699/ijcpe.2024.1.11","DOIUrl":"https://doi.org/10.31699/ijcpe.2024.1.11","url":null,"abstract":"Characterizing the reservoir accurately and understanding its rock’s composition is essential in predicting performance and determining reservoir designs. In this study, the carbonate Khasib formation from the late Cretaceous period for x oil field- southern Iraq has been examined characterizing. To achieve this, different characterization techniques were utilized. Firstly, using the flow zone indicator method revealed five hydraulic flow units (HFUs) of the Khasib formation. Every HFU represents a particular quality of reservoir rock. HFU1 is the one that refers to poor quality, while bad-quality reservoir rock is displayed as HFU2. HFU3 and HFU4 signify the intermediate and good reservoir rock quality respectively. The last hydraulic flow unit was of the highest quality reservoir rock which is denoted as HFU5. Additionally, we utilized cluster analysis to identify five distinct rock types within the Khasib formation. These rock types were labeled as RT-1 (the best reservoir rock type), RT-2 (good reservoir rock type), RT-3 (intermediate reservoir rock type), RT-4 (poor rock type), and RT-5 (very poor rock type). In addition, the recognition of five different HFUs that reflected the physical characteristics unique to each reservoir rock was achieved using Winland’s approach. Rock properties inside the reservoir are classified to HFU1 for best rocks, then HFU2 denotes good rock qualities through a medium one labeled as HFU3 while later HFU4 indicates poor quality, and the poorest quality is marked as HFU5. Finally, Lucia's classification for carbonate rock was employed as another analyzing rock quality method. Utilizing this technique reveals three distinct rock types within the Khasib formation. RC1 is the microfacies of grain stone, RC2 is the representative of pack-stone microfabrics and RC3 denotes muddy materials. The final rock types (facies) for Khasib formation can be identified according to the incorporation of the different characterization methods which can be utilized to create a realistic three-dimensional rock type model and distribute the properties based on the rock type.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"48 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140363821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulnnaser H. Fadel, Musa M. Abdullrhman, Mohamed Y. Elsagisli
{"title":"Evaluation and Performance Analysis of Liquefied Petroleum Gas Cylinders","authors":"Abdulnnaser H. Fadel, Musa M. Abdullrhman, Mohamed Y. Elsagisli","doi":"10.31699/ijcpe.2024.1.4","DOIUrl":"https://doi.org/10.31699/ijcpe.2024.1.4","url":null,"abstract":"This paper presents the experimental results of the tensile, bending, hardness, hydrostatic testing, and microstructural properties of liquefied petroleum gas cylinders from local sources. The burst pressure and fracture sites were also investigated. In addition, know how LPG cylinders are compliant with ISO 4706 requirements as per standard to get approval and acceptance. The tests were performed on three samples (C1, C2, and C3), and all the tests were according to the specification. Tensile testing was carried out at room temperature (23C°) as per ISO 6892-2016. Tensile test specimens with a gauge length of 50 mm were prepared from the sidewall of cylinders. The equipment used is built up around a 250 KN maximum capacity of (Instron Servo-Hydraulic Testing Machine Model 1332). At the same time, micro-hardness testing was carried out as per ASTM A384. Diamond indenter (pyramid) with a face angle of 136° was used. During testing (1kg) load was applied on the sample with a dwell time of 15 seconds. As for bending tests were carried out in accordance with ISO 7438 for all cylinders to evaluate their welding qualities. The results of microstructural characterization show that the carbon content for all samples averaged ~ 0.067 wt.% and manganese ~ 0.46 wt.% and the microstructure was largely ferritic. The tensile strength of the parent metal showed that LPG gas cylinders recorded high tensile strength of ~ 418 MPa on average, yield strength of ~ 291 MPa on average, a % elongation 26.6 (for parent metal), the tensile strength of ~ 449 MPa as average, yield strength of ~ 314 MPa as average, % elongation 32 (for weld metal) and hardness of ~ 143 (kg/mm2) as average by Vickers scale. Moreover, in the hydrostatic pressure test, the computer controlled electro-hydraulic servo pressure test machine was used. The results of the hydrostatic pressure test were as follows, pressure burst (BP) 103 bar, nominal hoop stress 528 MPa, volumetric expansion 25%, hydrostatic extend ratio 3.9%, sites of failure exist out of welding, and finally no fragmentation observed regarding to fracture types. All samples tested exhibited high resilience to crack propagation which showed ductile fracture after burst and tensile tests.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"39 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140364035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorptive Desulfurization of Iraqi Light Naphtha Using Calcite and Modified Calcite","authors":"Ahmed Qasim, H. H. Alwan","doi":"10.31699/ijcpe.2024.1.8","DOIUrl":"https://doi.org/10.31699/ijcpe.2024.1.8","url":null,"abstract":"This study used the adsorption method to remove sulfur compounds from light naphtha fuel by using calcite and modified calcite as adsorbents. The calcite was prepared from chicken eggshells by heating and activation methods. It was modified by mixing it with commercial activated carbon as a new adsorbent. XRD and FTIR were used to characterize the adsorbents. Light naphtha fuel from the Al-Diwaniyah refinery, with a sulfur concentration of 776 ppm, was used in batch adsorption studies. Various operation conditions that affect the adsorption process were studied such as temperature (20–40 °C), weight of the adsorbent (1-3 g), and contact time (15–45 min) at constant mixing speed (300 rpm). In this study, the Minitab Program-Box-Behnken design was used to design experiments in batch adsorption studies of light naphtha, which is considered more straightforward and accurate because it shows the effect of each dependent factor on the adsorption efficiency and removal ratio. Results and analysis showed that the increase in temperature, the amount of adsorbent, and contact time would increase the removal efficiency. The analysis of adsorption equilibrium isotherms shows that the experimental data follows the Freundlich isotherm model for adsorbents. According to the results of the study, the highest removal percentages of sulfur content of light naphtha using calcite and modified calcite were 61% and 79%, respectively.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":"18 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140364412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selecting Optimum Dimensions for a Three-Phase Horizontal Smart Separator for Khor Mor Gas-Condensate Processing Plant","authors":"Fenk A. Sulaiman, H. Sidiq","doi":"10.31699/ijcpe.2023.4.6","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.4.6","url":null,"abstract":"The Khor Mor gas-condensate processing plant in Iraq is currently facing operational challenges due to foaming issues in the sweetening tower caused by high-soluble hydrocarbon liquids entering the tower. The root cause of the problem could be liquid carry-over as the separation vessels within the plant fail to remove liquid droplets from the gas phase. This study employs Aspen HYSYS v.11 software to investigate the performance of the industrial three-phase horizontal separator, Bravo #2, located upstream of the Khor Mor sweetening tower, under both current and future operational conditions. The simulation results, regarding the size distribution of liquid droplets in the gas product and the efficiency gas/liquid separation, reveal that the separator falls short of eliminating all liquid droplets of specified sizes from the gas phase to meet efficiency requirements, weather with or without a mist extractor. Consequently, an analysis of various structural parameters of the vessel is undertaken to determine their impact on the carried-over liquid mass flow rate and the vessel’s gas/liquid efficiency. The findings recommend a new design concept termed the \"smart separator\" for Bravo #2, applicable to both current and anticipated operational scenarios. The smart separator demonstrates a remarkable enhancement in gas/liquid separation efficiency, showcasing improvements of 21.31% and 24.02% under existing and future operating conditions, respectively. This innovative design proves effective in controlling liquid carry-over and maintaining high-efficiency levels, even as vessel inlet flow rates increase over time, thus preventing foaming phenomena in downstream processes caused carried-over liquids.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139138263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic Modeling of Electromembrane Extraction of Copper using a Novel Electrolytic Cell Provided with a Supported Liquid Membrane","authors":"Noor R. Kadhim, H. Flayeh, A. Abbar","doi":"10.31699/ijcpe.2023.4.4","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.4.4","url":null,"abstract":"The aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of copper mass transfer across the membrane. As the applied voltage increased, the rate constant also increased. Additionally, increasing the pH of the solution led to an initial elevate in the rate constant, reaching a maximum value at pH 5, after which it started to decline. Moreover, higher initial copper concentrations had an adverse effect on the rate constant. Notably, the concentration decay profiles observed under different operating conditions followed first-order kinetics, with correlation coefficients exceeding 0.99. The elucidation of this discovery emanated from a remarkable and striking congruence between the experimental data and the mathematical underpinnings of the first-order kinetics model. This serendipitous alignment profoundly reinforced the robustness, veracity, and unwavering reliability of meticulously obtained results, amplifying the credibility and trustworthiness of the present comprehensive study.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139139210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zainab Jamka, Wadood T. Mohammed, Zhenjiang You, Hussein Rasool Abid
{"title":"Enhancing Nitrate Ion Removal from Water using Fixed Bed Columns with Composite Chitosan-based Beads","authors":"Zainab Jamka, Wadood T. Mohammed, Zhenjiang You, Hussein Rasool Abid","doi":"10.31699/ijcpe.2023.4.7","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.4.7","url":null,"abstract":"Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notably, Cs-Ze-Zr and Cs-Bn-Zr demonstrated impressive removal efficiencies, reaching 87.23% and 92.02%, respectively. The optimal conditions for peak performance were found to be an inlet flow rate of 1 ml/min, a bed height of 3 cm, and initial concentrations of 400 mg/L and 600 mg/L for Cs-Ze-Zr and Cs-Bn-Zr, respectively.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":" 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139139858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anodic and Cathodic preparation of MnO2/Co2O3 Composite Electrode Anodes for Electro-Oxidation of Phenol","authors":"Yamama A. Ahmed, R. Salman, Fatma Kandemirli","doi":"10.31699/ijcpe.2023.4.12","DOIUrl":"https://doi.org/10.31699/ijcpe.2023.4.12","url":null,"abstract":"The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various deposited oxide was characterized by energy dispersive X-ray spectroscopy (EDX). The study also highlighted the effect of current density (40, 60, and 80 mA/cm2), pH (3, 4, and 5), and the concentration of NaCl (1, 1.5, and 2 g/l) on the anodic electro-oxidation of phenol was investigated. The results revealed that the composite anodes are successfully prepared galvanostatically by anodic and cathodic deposition. In addition, the current density of 25 mA/cm2 gave the best cathodic deposition performance. The removal efficiency of phenol and other by-products increased as the current density and the concentration of NaCl in the electrolyte increased, while it decreased as the pH increased. The prepared composite electrode gave high COD removal efficiency (98.769 %) at the current density of 80 mA/cm2, pH= 3, NaCl conc. of 2 g/L within 3 h.","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":" 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139140789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}