Artificial Intelligence in Agriculture最新文献

筛选
英文 中文
Cross-comparative review of Machine learning for plant disease detection: apple, cassava, cotton and potato plants 机器学习用于植物病害检测的交叉比较综述:苹果、木薯、棉花和马铃薯植物
Artificial Intelligence in Agriculture Pub Date : 2024-06-01 DOI: 10.1016/j.aiia.2024.04.002
James Daniel Omaye , Emeka Ogbuju , Grace Ataguba , Oluwayemisi Jaiyeoba , Joseph Aneke , Francisca Oladipo
{"title":"Cross-comparative review of Machine learning for plant disease detection: apple, cassava, cotton and potato plants","authors":"James Daniel Omaye ,&nbsp;Emeka Ogbuju ,&nbsp;Grace Ataguba ,&nbsp;Oluwayemisi Jaiyeoba ,&nbsp;Joseph Aneke ,&nbsp;Francisca Oladipo","doi":"10.1016/j.aiia.2024.04.002","DOIUrl":"10.1016/j.aiia.2024.04.002","url":null,"abstract":"<div><p>Plant disease detection has played a significant role in combating plant diseases that pose a threat to global agriculture and food security. Detecting these diseases early can help mitigate their impact and ensure healthy crop yields. Machine learning algorithms have emerged as powerful tools for accurately identifying and classifying a wide range of plant diseases from trained image datasets of affected crops. These algorithms, including deep learning algorithms, have shown remarkable success in recognizing disease patterns and early signs of plant diseases. Besides early detection, there are other potential benefits of machine learning algorithms in overall plant disease management, such as soil and climatic condition predictions for plants, pest identification, proximity detection, and many more. Over the years, research has focused on using machine-learning algorithms for plant disease detection. Nevertheless, little is known about the extent to which the research community has explored machine learning algorithms to cover other significant areas of plant disease management. In view of this, we present a cross-comparative review of machine learning algorithms and applications designed for plant disease detection with a specific focus on four (4) economically important plants: apple, cassava, cotton, and potato. We conducted a systematic review of articles published between 2013 and 2023 to explore trends in the research community over the years. After filtering a number of articles based on our inclusion criteria, including articles that present individual prediction accuracy for classes of disease associated with the selected plants, 113 articles were considered relevant. From these articles, we analyzed the state-of-the-art techniques, challenges, and future prospects of using machine learning for disease identification of the selected plants. Results from our review show that deep learning and other algorithms performed significantly well in detecting plant diseases. In addition, we found a few references to plant disease management covering prevention, diagnosis, control, and monitoring. In view of this, little or no work has explored the prediction of the recovery of affected plants. Hence, we propose opportunities for developing machine learning-based technologies to cover prevention, diagnosis, control, monitoring, and recovery.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 127-151"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258972172400014X/pdfft?md5=a2288673548d57c63626027a95ff21bf&pid=1-s2.0-S258972172400014X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperparameter optimization of YOLOv8 for smoke and wildfire detection: Implications for agricultural and environmental safety 用于烟雾和野火探测的 YOLOv8 超参数优化:对农业和环境安全的影响
Artificial Intelligence in Agriculture Pub Date : 2024-06-01 DOI: 10.1016/j.aiia.2024.05.003
Leo Ramos , Edmundo Casas , Eduardo Bendek , Cristian Romero , Francklin Rivas-Echeverría
{"title":"Hyperparameter optimization of YOLOv8 for smoke and wildfire detection: Implications for agricultural and environmental safety","authors":"Leo Ramos ,&nbsp;Edmundo Casas ,&nbsp;Eduardo Bendek ,&nbsp;Cristian Romero ,&nbsp;Francklin Rivas-Echeverría","doi":"10.1016/j.aiia.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.aiia.2024.05.003","url":null,"abstract":"<div><p>In this study, we extensively evaluated the viability of the state-of-the-art YOLOv8 architecture for object detection tasks, specifically tailored for smoke and wildfire identification with a focus on agricultural and environmental safety. All available versions of YOLOv8 were initially fine-tuned on a domain-specific dataset that included a variety of scenarios, crucial for comprehensive agricultural monitoring. The ‘large’ version (YOLOv8l) was selected for further hyperparameter tuning based on its performance metrics. This model underwent a detailed hyperparameter optimization using the One Factor At a Time (OFAT) methodology, concentrating on key parameters such as learning rate, batch size, weight decay, epochs, and optimizer. Insights from the OFAT study were used to define search spaces for a subsequent Random Search (RS). The final model derived from RS demonstrated significant improvements over the initial fine-tuned model, increasing overall precision by 1.39 %, recall by 1.48 %, F1-score by 1.44 %, [email protected] by 0.70 %, and [email protected]:0.95 by 5.09 %. We validated the enhanced model's efficacy on a diverse set of real-world images, reflecting various agricultural settings, to confirm its robustness in detecting smoke and fire. These results underscore the model's reliability and effectiveness in scenarios critical to agricultural safety and environmental monitoring. This work, representing a significant advancement in the field of fire and smoke detection through machine learning, lays a strong foundation for future research and solutions aimed at safeguarding agricultural areas and natural environments.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 109-126"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000187/pdfft?md5=c551b82b80431a9f2f37f79894497fcb&pid=1-s2.0-S2589721724000187-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms 利用光学和雷达遥感的榛子绘图检测系统:机器学习算法基准测试
Artificial Intelligence in Agriculture Pub Date : 2024-06-01 DOI: 10.1016/j.aiia.2024.05.001
Daniele Sasso , Francesco Lodato , Anna Sabatini , Giorgio Pennazza , Luca Vollero , Marco Santonico , Mario Merone
{"title":"Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms","authors":"Daniele Sasso ,&nbsp;Francesco Lodato ,&nbsp;Anna Sabatini ,&nbsp;Giorgio Pennazza ,&nbsp;Luca Vollero ,&nbsp;Marco Santonico ,&nbsp;Mario Merone","doi":"10.1016/j.aiia.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.aiia.2024.05.001","url":null,"abstract":"<div><p>Mapping hazelnut orchards can facilitate land planning and utilization policies, supporting the development of cooperative precision farming systems. The present work faces the detection of hazelnut crops using optical and radar remote sensing data. A comparative study of Machine Learning techniques is presented. The system proposed utilizes multi-temporal data from the Sentinel-1 and Sentinel-2 datasets extracted over several years and processed with cloud tools. We provide a dataset of 62,982 labeled samples, with 16,561 samples belonging to the ‘hazelnut’ class and 46,421 samples belonging to the ‘other’ class, collected in 8 heterogeneous geographical areas of the Viterbo province. Two different comparative tests are conducted: firstly, we use a Nested 5-Fold Cross-Validation methodology to train, optimize, and compare different Machine Learning algorithms on a single area. In a second experiment, the algorithms were trained on one area and tested on the remaining seven geographical areas. The developed study demonstrates how AI analysis applied to Sentinel-1 and Sentinel-2 data is a valid technology for hazelnut mapping. From the results, it emerges that Random Forest is the classifier with the highest generalizability, achieving the best performance in the second test with an accuracy of 96% and an F1 score of 91% for the ‘hazelnut’ class.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 97-108"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000163/pdfft?md5=3c0871cbfa7a056adc6aefce898ac420&pid=1-s2.0-S2589721724000163-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
InstaCropNet: An efficient Unet-Based architecture for precise crop row detection in agricultural applications InstaCropNet:基于 Unet 的高效架构,用于农业应用中的作物行精确检测
Artificial Intelligence in Agriculture Pub Date : 2024-06-01 DOI: 10.1016/j.aiia.2024.05.002
Zhiming Guo , Yuhang Geng , Chuan Wang , Yi Xue , Deng Sun , Zhaoxia Lou , Tianbao Chen , Tianyu Geng , Longzhe Quan
{"title":"InstaCropNet: An efficient Unet-Based architecture for precise crop row detection in agricultural applications","authors":"Zhiming Guo ,&nbsp;Yuhang Geng ,&nbsp;Chuan Wang ,&nbsp;Yi Xue ,&nbsp;Deng Sun ,&nbsp;Zhaoxia Lou ,&nbsp;Tianbao Chen ,&nbsp;Tianyu Geng ,&nbsp;Longzhe Quan","doi":"10.1016/j.aiia.2024.05.002","DOIUrl":"10.1016/j.aiia.2024.05.002","url":null,"abstract":"<div><p>Autonomous navigation in farmlands is one of the key technologies for achieving autonomous management in maize fields. Among various navigation techniques, visual navigation using widely available RGB images is a cost-effective solution. However, current mainstream methods for maize crop row detection often rely on highly specialized, manually devised heuristic rules, limiting the scalability of these methods. To simplify the solution and enhance its universality, we propose an innovative crop row annotation strategy. This strategy, by simulating the strip-like structure of the crop row's central area, effectively avoids interference from lateral growth of crop leaves. Based on this, we developed a deep learning network with a dual-branch architecture, InstaCropNet, which achieves end-to-end segmentation of crop row instances. Subsequently, through the row anchor segmentation technique, we accurately locate the positions of different crop row instances and perform line fitting. Experimental results demonstrate that our method has an average angular deviation of no more than 2°, and the accuracy of crop row detection reaches 96.5%.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 85-96"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000175/pdfft?md5=4c6e92e045769fe5ef6e32adc1438b8b&pid=1-s2.0-S2589721724000175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards sustainable agriculture: Harnessing AI for global food security 实现可持续农业:利用人工智能促进全球粮食安全
Artificial Intelligence in Agriculture Pub Date : 2024-04-30 DOI: 10.1016/j.aiia.2024.04.003
Dhananjay K. Pandey , Richa Mishra
{"title":"Towards sustainable agriculture: Harnessing AI for global food security","authors":"Dhananjay K. Pandey ,&nbsp;Richa Mishra","doi":"10.1016/j.aiia.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.aiia.2024.04.003","url":null,"abstract":"<div><p>The issue of food security continues to be a prominent global concern, affecting a significant number of individuals who experience the adverse effects of hunger and malnutrition. The finding of a solution of this intricate issue necessitates the implementation of novel and paradigm-shifting methodologies in agriculture and food sector. In recent times, the domain of artificial intelligence (AI) has emerged as a potent tool capable of instigating a profound influence on the agriculture and food sectors. AI technologies provide significant advantages by optimizing crop cultivation practices, enabling the use of predictive modelling and precision agriculture techniques, and aiding efficient crop monitoring and disease identification. Additionally, AI has the potential to optimize supply chain operations, storage management, transportation systems, and quality assurance processes. It also tackles the problem of food loss and waste through post-harvest loss reduction, predictive analytics, and smart inventory management. This study highlights that how by utilizing the power of AI, we could transform the way we produce, distribute, and manage food, ultimately creating a more secure and sustainable future for all.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 72-84"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000151/pdfft?md5=a9d0ed80991556893a392b3b0a4013c0&pid=1-s2.0-S2589721724000151-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based intelligent precise aeration strategy for factory recirculating aquaculture systems 基于深度学习的工厂化循环水产养殖系统智能精确曝气策略
Artificial Intelligence in Agriculture Pub Date : 2024-04-15 DOI: 10.1016/j.aiia.2024.04.001
Junchao Yang , Yuting Zhou , Zhiwei Guo , Yueming Zhou , Yu Shen
{"title":"Deep learning-based intelligent precise aeration strategy for factory recirculating aquaculture systems","authors":"Junchao Yang ,&nbsp;Yuting Zhou ,&nbsp;Zhiwei Guo ,&nbsp;Yueming Zhou ,&nbsp;Yu Shen","doi":"10.1016/j.aiia.2024.04.001","DOIUrl":"10.1016/j.aiia.2024.04.001","url":null,"abstract":"<div><p>Factory recirculating aquaculture system (RAS) is facing in a stage of continuous research and technological innovation. Intelligent aquaculture is an important direction for the future development of aquaculture. However, the RAS nowdays still has poor self-learning and optimal decision-making capabilities, which leads to high aquaculture cost and low running efficiency. In this paper, a precise aeration strategy based on deep learning is designed for improving the healthy growth of breeding objects. Firstly, the situation perception driven by computer vision is used to detect the hypoxia behavior. Then combined with the biological energy model, it is constructed to calculate the breeding objects oxygen consumption. Finally, the optimal adaptive aeration strategy is generated according to hypoxia behavior judgement and biological energy model. Experimental results show that the energy consumption of proposed precise aeration strategy decreased by 26.3% compared with the manual control and 12.8% compared with the threshold control. Meanwhile, stable water quality conditions accelerated breeding objects growth, and the breeding cycle with the average weight of 400 g was shortened from 5 to 6 months to 3–4 months.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 57-71"},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000138/pdfft?md5=35867104fdfd8d303cccc4a2f32568ae&pid=1-s2.0-S2589721724000138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140768894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grow-light smart monitoring system leveraging lightweight deep learning for plant disease classification 利用轻量级深度学习进行植物病害分类的生长光智能监控系统
Artificial Intelligence in Agriculture Pub Date : 2024-04-04 DOI: 10.1016/j.aiia.2024.03.003
William Macdonald , Yuksel Asli Sari , Majid Pahlevani
{"title":"Grow-light smart monitoring system leveraging lightweight deep learning for plant disease classification","authors":"William Macdonald ,&nbsp;Yuksel Asli Sari ,&nbsp;Majid Pahlevani","doi":"10.1016/j.aiia.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.aiia.2024.03.003","url":null,"abstract":"<div><p>This work focuses on a novel lightweight machine learning approach to the task of plant disease classification, posing as a core component of a larger grow-light smart monitoring system. To the extent of our knowledge, this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks, residual connections, and dense residual connections applied without pre-training to the PlantVillage dataset. The novel contributions of this work include the proposal of a smart monitoring framework outline; responsible for detection and classification of ailments via the devised lightweight networks as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system. Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy, precision, recall, and F1-scores of 96.75%, 97.62%, 97.59%, and 97.58% respectively, while consisting of only 228,479 model parameters. These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset, of which the proposed down-scaled lightweight models were capable of performing equally to, if not better than many large-scale counterparts with drastically less computational requirements.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 44-56"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000126/pdfft?md5=92380011c829045a5c9cecbd59eb4f0b&pid=1-s2.0-S2589721724000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning for broadleaf weed seedlings classification incorporating data variability and model flexibility across two contrasting environments 深度学习用于阔叶杂草幼苗分类,在两种截然不同的环境中结合数据的可变性和模型的灵活性
Artificial Intelligence in Agriculture Pub Date : 2024-03-13 DOI: 10.1016/j.aiia.2024.03.002
Lorenzo León , Cristóbal Campos , Juan Hirzel
{"title":"Deep learning for broadleaf weed seedlings classification incorporating data variability and model flexibility across two contrasting environments","authors":"Lorenzo León ,&nbsp;Cristóbal Campos ,&nbsp;Juan Hirzel","doi":"10.1016/j.aiia.2024.03.002","DOIUrl":"10.1016/j.aiia.2024.03.002","url":null,"abstract":"<div><p>The increasing deployment of deep learning models for distinguishing weeds and crops has witnessed notable strides in agricultural scenarios. However, a conspicuous gap endures in the literature concerning the training and testing of models across disparate environmental conditions. Predominant methodologies either delineate a single dataset distribution into training, validation, and testing subsets or merge datasets from diverse conditions or distributions before their division into the subsets. Our study aims to ameliorate this gap by extending to several broadleaf weed categories across varied distributions, evaluating the impact of training convolutional neural networks on datasets specific to particular conditions or distributions, and assessing their performance in entirely distinct settings through three experiments. By evaluating diverse network architectures and training approaches (<em>finetuning</em> versus <em>feature extraction</em>), testing various architectures, employing different training strategies, and amalgamating data, we devised straightforward guidelines to ensure the model's deployability in contrasting environments with sustained precision and accuracy.</p><p>In Experiment 1, conducted in a uniform environment, accuracy ranged from 80% to 100% across all models and training strategies, with <em>finetune</em> mode achieving a superior performance of 94% to 99.9% compared to the <em>feature extraction</em> mode at 80% to 92.96%. Experiment 2 underscored a significant performance decline, with accuracy figures between 25% and 60%, primarily at 40%, when the origin of the test data deviated from the train and validation sets. Experiment 3, spotlighting dataset and distribution amalgamation, yielded promising accuracy metrics, notably a peak of 99.6% for ResNet in <em>finetuning</em> mode to a low of 69.9% for InceptionV3 in <em>feature extraction</em> mode. These pivotal findings emphasize that merging data from diverse distributions, coupled with <em>finetuned</em> training on advanced architectures like ResNet and MobileNet, markedly enhances performance, contrasting with the relatively lower performance exhibited by simpler networks like AlexNet. Our results suggest that embracing data diversity and flexible training methodologies are crucial for optimizing weed classification models when disparate data distributions are available. This study gives a practical alternative for treating diverse datasets with real-world agricultural variances.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 29-43"},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000059/pdfft?md5=d8051b8dea55cec53a6ba7889cbc0c03&pid=1-s2.0-S2589721724000059-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140283105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LeafSpotNet: A deep learning framework for detecting leaf spot disease in jasmine plants LeafSpotNet:检测茉莉花叶斑病的深度学习框架
Artificial Intelligence in Agriculture Pub Date : 2024-03-11 DOI: 10.1016/j.aiia.2024.02.002
Shwetha V, Arnav Bhagwat, Vijaya Laxmi
{"title":"LeafSpotNet: A deep learning framework for detecting leaf spot disease in jasmine plants","authors":"Shwetha V,&nbsp;Arnav Bhagwat,&nbsp;Vijaya Laxmi","doi":"10.1016/j.aiia.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.aiia.2024.02.002","url":null,"abstract":"<div><p>Leaf blight spot disease, caused by bacteria and fungi, poses a threat to plant health, leading to leaf discoloration and diminished agricultural yield. In response, we present a MobileNetV3 based classifier designed for the Jasmine plant, leveraging lightweight Convolutional Neural Networks (CNNs) to accurately identify disease stages. The model integrates depth wise convolution layers and max pool layers for enhanced feature extraction, focusing on crucial low level features indicative of the disease. Through preprocessing techniques, including data augmentation with Conditional GAN and Particle Swarm Optimization for feature selection, the classifier achieves robust performance. Evaluation on curated datasets demonstrates an outstanding 97% training accuracy, highlighting its efficacy. Real world testing with diverse conditions, such as extreme camera angles and varied lighting, attests to the model's resilience, yielding test accuracies between 94% and 96%. The dataset's tailored design for CNN based classification ensures result reliability. Importantly, the model's lightweight classification, marked by fast computation time and reduced size, positions it as an efficient solution for real time applications. This comprehensive approach underscores the proposed classifier's significance in addressing leaf blight spot disease challenges in commercial crops.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 1-18"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000035/pdfft?md5=eeca9eda52b267f86b4fd11610c9f9fd&pid=1-s2.0-S2589721724000035-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach based on a modified mask R-CNN for the weight prediction of live pigs 基于改进型掩膜 R-CNN 的活猪体重预测新方法
Artificial Intelligence in Agriculture Pub Date : 2024-03-04 DOI: 10.1016/j.aiia.2024.03.001
Chuanqi Xie , Yuji Cang , Xizhong Lou , Hua Xiao , Xing Xu , Xiangjun Li , Weidong Zhou
{"title":"A novel approach based on a modified mask R-CNN for the weight prediction of live pigs","authors":"Chuanqi Xie ,&nbsp;Yuji Cang ,&nbsp;Xizhong Lou ,&nbsp;Hua Xiao ,&nbsp;Xing Xu ,&nbsp;Xiangjun Li ,&nbsp;Weidong Zhou","doi":"10.1016/j.aiia.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.aiia.2024.03.001","url":null,"abstract":"<div><p>Since determining the weight of pigs during large-scale breeding and production is challenging, using non-contact estimation methods is vital. This study proposed a novel pig weight prediction method based on a modified mask region-convolutional neural network (mask R-CNN). The modified approach used ResNeSt as the backbone feature extraction network to enhance the image feature extraction ability. The feature pyramid network (FPN) was added to the backbone feature extraction network for multi-scale feature fusion. The channel attention mechanism (CAM) and spatial attention mechanism (SAM) were introduced in the region proposal network (RPN) for the adaptive integration of local features and their global dependencies to capture global information, ultimately improving image segmentation accuracy. The modified network obtained a precision rate (P), recall rate (R), and mean average precision (MAP) of 90.33%, 89.85%, and 95.21%, respectively, effectively segmenting the pig regions in the images. Five image features, namely the back area (A), body length (L), body width (W), average depth (AD), and eccentricity (E), were investigated. The pig depth images were used to build five regression algorithms (ordinary least squares (OLS), AdaBoost, CatBoost, XGBoost, and random forest (RF)) for weight value prediction. AdaBoost achieved the best prediction result with a coefficient of determination (R<sup>2</sup>) of 0.987, a mean absolute error (MAE) of 2.96 kg, a mean square error (MSE) of 12.87 kg<sup>2</sup>, and a mean absolute percentage error (MAPE) of 8.45%. The results demonstrated that the machine learning models effectively predicted the weight values of the pigs, providing technical support for intelligent pig farm management.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000047/pdfft?md5=43c515f8d95da29c768ed4d67f22ebc0&pid=1-s2.0-S2589721724000047-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信