Data Science and Engineering最新文献

筛选
英文 中文
Uncovering Flat and Hierarchical Topics by Community Discovery on Word Co-occurrence Network. 通过词语共现网络上的社群发现揭示扁平和分层主题
IF 4.2 2区 计算机科学
Data Science and Engineering Pub Date : 2024-01-01 Epub Date: 2024-03-13 DOI: 10.1007/s41019-023-00239-2
Eric Austin, Shraddha Makwana, Amine Trabelsi, Christine Largeron, Osmar R Zaïane
{"title":"Uncovering Flat and Hierarchical Topics by Community Discovery on Word Co-occurrence Network.","authors":"Eric Austin, Shraddha Makwana, Amine Trabelsi, Christine Largeron, Osmar R Zaïane","doi":"10.1007/s41019-023-00239-2","DOIUrl":"10.1007/s41019-023-00239-2","url":null,"abstract":"<p><p>Topic modeling aims to discover latent themes in collections of text documents. It has various applications across fields such as sociology, opinion analysis, and media studies. In such areas, it is essential to have easily interpretable, diverse, and coherent topics. An efficient topic modeling technique should accurately identify flat and hierarchical topics, especially useful in disciplines where topics can be logically arranged into a tree format. In this paper, we propose Community Topic, a novel algorithm that exploits word co-occurrence networks to mine communities and produces topics. We also evaluate the proposed approach using several metrics and compare it with usual baselines, confirming its good performances. Community Topic enables quick identification of flat topics and topic hierarchy, facilitating the on-demand exploration of sub- and super-topics. It also obtains good results on datasets in different languages.</p>","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"9 1","pages":"41-61"},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140337633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AIoT-CitySense: AI and IoT-Driven City-Scale Sensing for Roadside Infrastructure Maintenance AIoT-CitySense:人工智能和物联网驱动的城市规模传感技术用于路边基础设施维护
IF 4.2 2区 计算机科学
Data Science and Engineering Pub Date : 2023-12-19 DOI: 10.1007/s41019-023-00236-5
A. Forkan, Yongjin Kang, Felip Martí, Abhik Banerjee, Chris McCarthy, Hadi Ghaderi, Breno Costa, Anas Dawod, Dimitrios Georgakopolous, P. Jayaraman
{"title":"AIoT-CitySense: AI and IoT-Driven City-Scale Sensing for Roadside Infrastructure Maintenance","authors":"A. Forkan, Yongjin Kang, Felip Martí, Abhik Banerjee, Chris McCarthy, Hadi Ghaderi, Breno Costa, Anas Dawod, Dimitrios Georgakopolous, P. Jayaraman","doi":"10.1007/s41019-023-00236-5","DOIUrl":"https://doi.org/10.1007/s41019-023-00236-5","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":" 34","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138962482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomaly Detection with Sub-Extreme Values: Health Provider Billing 亚极值异常检测:医疗机构账单
IF 4.2 2区 计算机科学
Data Science and Engineering Pub Date : 2023-11-29 DOI: 10.1007/s41019-023-00234-7
Rob Muspratt, Musa Mammadov
{"title":"Anomaly Detection with Sub-Extreme Values: Health Provider Billing","authors":"Rob Muspratt, Musa Mammadov","doi":"10.1007/s41019-023-00234-7","DOIUrl":"https://doi.org/10.1007/s41019-023-00234-7","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"90 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph Neural Network-Based Short‑Term Load Forecasting with Temporal Convolution 基于时态卷积的图神经网络短期负荷预测
IF 4.2 2区 计算机科学
Data Science and Engineering Pub Date : 2023-11-20 DOI: 10.1007/s41019-023-00233-8
Chenchen Sun, Yan Ning, Derong Shen, Tiezheng Nie
{"title":"Graph Neural Network-Based Short‑Term Load Forecasting with Temporal Convolution","authors":"Chenchen Sun, Yan Ning, Derong Shen, Tiezheng Nie","doi":"10.1007/s41019-023-00233-8","DOIUrl":"https://doi.org/10.1007/s41019-023-00233-8","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"152 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139259513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Representation Learning with Generative Adversarial Imputation Network for Improved Classification of Longitudinal Data 基于生成对抗输入网络的联合表示学习改进纵向数据分类
2区 计算机科学
Data Science and Engineering Pub Date : 2023-10-17 DOI: 10.1007/s41019-023-00232-9
Sharon Torao Pingi, Duoyi Zhang, Md Abul Bashar, Richi Nayak
{"title":"Joint Representation Learning with Generative Adversarial Imputation Network for Improved Classification of Longitudinal Data","authors":"Sharon Torao Pingi, Duoyi Zhang, Md Abul Bashar, Richi Nayak","doi":"10.1007/s41019-023-00232-9","DOIUrl":"https://doi.org/10.1007/s41019-023-00232-9","url":null,"abstract":"Abstract Generative adversarial networks (GANs) have demonstrated their effectiveness in generating temporal data to fill in missing values, enhancing the classification performance of time series data. Longitudinal datasets encompass multivariate time series data with additional static features that contribute to sample variability over time. These datasets often encounter missing values due to factors such as irregular sampling. However, existing GAN-based imputation methods that address this type of data missingness often overlook the impact of static features on temporal observations and classification outcomes. This paper presents a novel method, fusion-aided imputer-classifier GAN (FaIC-GAN), tailored for longitudinal data classification. FaIC-GAN simultaneously leverages partially observed temporal data and static features to enhance imputation and classification learning. We present four multimodal fusion strategies that effectively extract correlated information from both static and temporal modalities. Our extensive experiments reveal that FaIC-GAN successfully exploits partially observed temporal data and static features, resulting in improved classification accuracy compared to unimodal models. Our post-additive and attention-based multimodal fusion approaches within the FaIC-GAN model consistently rank among the top three methods for classification.","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135996121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Reinduction-Based Approach for Efficient High Utility Itemset Mining from Incremental Datasets 基于归纳法的增量数据集高效高效用项集挖掘方法
2区 计算机科学
Data Science and Engineering Pub Date : 2023-09-29 DOI: 10.1007/s41019-023-00229-4
Pushp Sra, Satish Chand
{"title":"A Reinduction-Based Approach for Efficient High Utility Itemset Mining from Incremental Datasets","authors":"Pushp Sra, Satish Chand","doi":"10.1007/s41019-023-00229-4","DOIUrl":"https://doi.org/10.1007/s41019-023-00229-4","url":null,"abstract":"Abstract High utility itemset mining is a crucial research area that focuses on identifying combinations of itemsets from databases that possess a utility value higher than a user-specified threshold. However, most existing algorithms assume that the databases are static, which is not realistic for real-life datasets that are continuously growing with new data. Furthermore, existing algorithms only rely on the utility value to identify relevant itemsets, leading to even the earliest occurring combinations being produced as output. Although some mining algorithms adopt a support-based approach to account for itemset frequency, they do not consider the temporal nature of itemsets. To address these challenges, this paper proposes the Scented Utility Miner (SUM) algorithm that uses a reinduction strategy to track the recency of itemset occurrence and mine itemsets from incremental databases. The paper provides a novel approach for mining high utility itemsets from dynamic databases and presents several experiments that demonstrate the effectiveness of the proposed approach.","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135244606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Few-Shot Relation Prediction of Knowledge Graph via Convolutional Neural Network with Self-Attention 基于自注意卷积神经网络的知识图谱少镜头关系预测
2区 计算机科学
Data Science and Engineering Pub Date : 2023-09-20 DOI: 10.1007/s41019-023-00230-x
Shanna Zhong, Jiahui Wang, Kun Yue, Liang Duan, Zhengbao Sun, Yan Fang
{"title":"Few-Shot Relation Prediction of Knowledge Graph via Convolutional Neural Network with Self-Attention","authors":"Shanna Zhong, Jiahui Wang, Kun Yue, Liang Duan, Zhengbao Sun, Yan Fang","doi":"10.1007/s41019-023-00230-x","DOIUrl":"https://doi.org/10.1007/s41019-023-00230-x","url":null,"abstract":"Abstract Knowledge graph (KG) has become the vital resource for various applications like question answering and recommendation system. However, several relations in KG only have few observed triples, which makes it necessary to develop the method for few-shot relation prediction. In this paper, we propose the C onvolutional Neural Network with Self- A ttention R elation P rediction (CARP) model to predict new facts with few observed triples. First, to learn the relation property features, we build a feature encoder by using the convolutional neural network with self-attention from the few observed triples rather than background knowledge. Then, by incorporating the learned features, we give an embedding network to learn the representation of incomplete triples. Finally, we give the loss function and training algorithm of our CARP model. Experimental results on three real-world datasets show that our proposed method improves Hits@10 by 48% on average over the state-of-the-art competitors.","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136309292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Keywords Search in Temporal Social Networks 时间社会网络中一种高效的关键词搜索方法
2区 计算机科学
Data Science and Engineering Pub Date : 2023-09-09 DOI: 10.1007/s41019-023-00218-7
Youming Ge, Zitong Chen, Yubao Liu
{"title":"An Efficient Keywords Search in Temporal Social Networks","authors":"Youming Ge, Zitong Chen, Yubao Liu","doi":"10.1007/s41019-023-00218-7","DOIUrl":"https://doi.org/10.1007/s41019-023-00218-7","url":null,"abstract":"Abstract With the increasing of requirements from many aspects, various queries and analyses arise focusing on social network. Time is a common and necessary dimension in various types of social networks. Social networks with time information are called temporal social networks, in which time information can be the time when a user sends message to another user. Keywords search in temporal social networks consists of finding relationships between a group users that has a set of query labels and is valid within the query time interval. It provides assistance in social network analysis, classification of social network users, community detection, etc. However, the existing methods have limitations in solving temporal social network keyword search problems. We propose a basic algorithm, the discrete timestamp algorithm, with the intention of turning the problem into a traditional keyword search on social networks. We also propose an approximative algorithm based on the discrete timestamp algorithm, but it still suffers from the traditional algorithms’ low efficiency. To further improve the performance, we propose a new algorithm based on dynamic programming to solve the keyword search in temporal social network. The main idea is to extend a vertex into a solution by edge-growth operation and tree-merger operation. We also propose two powerful pruning techniques to reduce the intermediate results during the extension. Additionally, all of the algorithms we proposed are capable of handling a variety of ranking functions, and all of them can be made to conform to top-N keyword querying. The efficiency and effectiveness of the proposed algorithms are verified through extensive empirical studies.","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136193060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Survey of Personalized News Recommendation 个性化新闻推荐研究
IF 4.2 2区 计算机科学
Data Science and Engineering Pub Date : 2023-09-02 DOI: 10.1007/s41019-023-00228-5
Xiangfu Meng, Hongjin Huo, Xiaoyan Zhang, Wanchun Wang, Jinxia Zhu
{"title":"A Survey of Personalized News Recommendation","authors":"Xiangfu Meng, Hongjin Huo, Xiaoyan Zhang, Wanchun Wang, Jinxia Zhu","doi":"10.1007/s41019-023-00228-5","DOIUrl":"https://doi.org/10.1007/s41019-023-00228-5","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"43 1","pages":"396 - 416"},"PeriodicalIF":4.2,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75142589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evolving Interest with Feature Co-action Network for CTR Prediction 基于特征协同网络的兴趣进化CTR预测
IF 4.2 2区 计算机科学
Data Science and Engineering Pub Date : 2023-09-02 DOI: 10.1007/s41019-023-00217-8
Zhiyang Yuan, Wenguang Zheng, Peilin Yang, Qingbo Hao, Yingyuan Xiao
{"title":"Evolving Interest with Feature Co-action Network for CTR Prediction","authors":"Zhiyang Yuan, Wenguang Zheng, Peilin Yang, Qingbo Hao, Yingyuan Xiao","doi":"10.1007/s41019-023-00217-8","DOIUrl":"https://doi.org/10.1007/s41019-023-00217-8","url":null,"abstract":"","PeriodicalId":52220,"journal":{"name":"Data Science and Engineering","volume":"2 1","pages":"344 - 356"},"PeriodicalIF":4.2,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78897260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信