{"title":"The Use of IoT for Determination of Time and Frequency Vibration Characteristics of Industrial Equipment for Condition-Based Maintenance","authors":"Ihor Turkin, Viacheslav Leznovskyi, Andrii Zelenkov, Agil Nabizade, Lina Volobuieva, Viktoriia Turkina","doi":"10.3390/computation11090177","DOIUrl":"https://doi.org/10.3390/computation11090177","url":null,"abstract":"The subject of study in this article is a method for industrial equipment vibration diagnostics that uses discrete Fourier transform and Allan variance to increase precision and accuracy of industrial equipment vibration diagnostics processes. We propose IoT-oriented solutions based on smart sensors. The primary objectives include validating the practicality of employing platform-oriented technologies for vibro-diagnostics of industrial equipment, creating software and hardware solutions for the IoT platform, and assessing measurement accuracy and precision through the analysis of measurement results in both time and frequency domains. The IoT system architecture for industrial equipment vibration diagnostics consists of three levels. At the autonomous sensor level, vibration acceleration indicators are obtained and transmitted via a BLE digital wireless data transmission channel to the second level, the hub, which is based on a BeagleBone single-board microcomputer. The computing power of BeagleBone is sufficient to work with artificial intelligence algorithms. At the third level of the server platform, the tasks of diagnosing and predicting the state of the equipment are solved, for which the Dictionary Learning algorithm implemented in the Python programming language is used. The verification of the accuracy and precision of the vibration diagnostics system was carried out on the developed stand. A comparison of the expected and measured results in the frequency and time domains confirms the correct operation of the entire system.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45832166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-05DOI: 10.3390/computation11090176
Monthon Intraraprasit, O. Chitsobhuk
{"title":"Filter Pruning with Convolutional Approximation Small Model Framework","authors":"Monthon Intraraprasit, O. Chitsobhuk","doi":"10.3390/computation11090176","DOIUrl":"https://doi.org/10.3390/computation11090176","url":null,"abstract":"Convolutional neural networks (CNNs) are extensively utilized in computer vision; however, they pose challenges in terms of computational time and storage requirements. To address this issue, one well-known approach is filter pruning. However, fine-tuning pruned models necessitates substantial computing power and a large retraining dataset. To restore model performance after pruning each layer, we propose the Convolutional Approximation Small Model (CASM) framework. CASM involves training a compact model with the remaining kernels and optimizing their weights to restore feature maps that resemble the original kernels. This method requires less complexity and fewer training samples compared to basic fine-tuning. We evaluate the performance of CASM on the CIFAR-10 and ImageNet datasets using VGG-16 and ResNet-50 models. The experimental results demonstrate that CASM surpasses the basic fine-tuning framework in terms of time acceleration (3.3× faster), requiring a smaller dataset for performance recovery after pruning, and achieving enhanced accuracy.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47647930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-05DOI: 10.3390/computation11090178
D. Setiadi, Nova Rijati
{"title":"An Image Encryption Scheme Combining 2D Cascaded Logistic Map and Permutation-Substitution Operations","authors":"D. Setiadi, Nova Rijati","doi":"10.3390/computation11090178","DOIUrl":"https://doi.org/10.3390/computation11090178","url":null,"abstract":"Confusion, diffusion, and encryption keys affect the quality of image encryption. This research proposes combining bit- and pixel-level permutation and substitution methods based on three advanced chaotic logistic map methods. The three chaotic methods are the 2D Logistic-adjusted-Sine map (2D-LASM), the 2D Logistic-sine-coupling map (2D-LSCM), and the 2D Logistic ICMIC cascade map (2D-LICM). The encryption method’s design consists of six stages of encryption, involving permutation operations based on chaotic order, substitution based on modulus and bitXOR, and hash functions. Hash functions are employed to enhance key space and key sensitivity quality. Several testing tools are utilized to assess encryption performance, including histogram and chi-square analysis, information entropy, correlation of adjacent pixels, differential analysis, key sensitivity and key space analysis, data loss and noise attacks, NIST randomness tests, and TestU01. Compared to using a single 2D logistic map, the amalgamation of bit-level and pixel-level encryption and the utilization of three 2D cascade logistic maps has improved encryption security performance. This method successfully passes the NIST, TestU01, and chi-square tests. Furthermore, it outperforms the previous method regarding correlation, information entropy, NPCR, and UACI tests.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49502114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-05DOI: 10.3390/computation11090175
N. Dorodnykh, A. Yurin
{"title":"Knowledge Graph Engineering Based on Semantic Annotation of Tables","authors":"N. Dorodnykh, A. Yurin","doi":"10.3390/computation11090175","DOIUrl":"https://doi.org/10.3390/computation11090175","url":null,"abstract":"A table is a convenient way to store, structure, and present data. Tables are an attractive knowledge source in various applications, including knowledge graph engineering. However, a lack of understanding of the semantic structure and meaning of their content may reduce the effectiveness of this process. Hence, the restoration of tabular semantics and the development of knowledge graphs based on semantically annotated tabular data are highly relevant tasks that have attracted a lot of attention in recent years. We propose a hybrid approach using heuristics and machine learning methods for the semantic annotation of relational tabular data and knowledge graph populations with specific entities extracted from the annotated tables. This paper discusses the main stages of the approach, its implementation, and performance testing. We also consider three case studies for the development of domain-specific knowledge graphs in the fields of industrial safety inspection, labor market analysis, and university activities. The evaluation results revealed that the application of our approach can be considered the initial stage for the rapid filling of domain-specific knowledge graphs based on tabular data.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45706069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-04DOI: 10.3390/computation11090174
Raneen I. Al-Essa, G. Al-Suhail
{"title":"AFB-GPSR: Adaptive Beaconing Strategy Based on Fuzzy Logic Scheme for Geographical Routing in a Mobile Ad Hoc Network (MANET)","authors":"Raneen I. Al-Essa, G. Al-Suhail","doi":"10.3390/computation11090174","DOIUrl":"https://doi.org/10.3390/computation11090174","url":null,"abstract":"In mobile ad hoc networks (MANETs), geographical routing provides a robust and scalable solution for the randomly distributed and unrestricted movement of nodes. Each node broadcasts beacon packets periodically to exchange its position with neighboring nodes. However, reliable beacons can negatively affect routing performance in dynamic environments, particularly when there is a sudden and rapid change in the nodes’ mobility. Therefore, this paper suggests an improved Greedy Perimeter Stateless Routing Protocol, namely AFB-GPSR, to reduce routing overhead and increase network reliability by maintaining correct route selection. To this end, an adaptive beaconing strategy based on a fuzzy logic scheme (AFB) is utilized to choose more optimal routes for data forwarding. Instead of constant periodic beaconing, the AFB strategy can dynamically adjust beacon interval time with the variation of three network parameters: node speed, one-hop neighbors’ density, and link quality of nodes. The routing evaluation of the proposed protocol is carried out using OMNeT++ simulation experiments. The results show that the AFB strategy within the GPSR protocol can effectively reduce the routing overhead and improve the packet-delivery ratio, throughput, average end-to-end delay, and normalized routing load as compared to traditional routing protocols (AODV and GPSR with fixed beaconing). An enhancement of the packet-delivery ratio of up to 14% is achieved, and the routing cost is reduced by 35%. Moreover, the AFB-GPSR protocol exhibits good performance versus the state-of-the-art protocols in MANET.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47046882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-04DOI: 10.3390/computation11090173
Nikita Kosyanov, E. Gubar, Vladislav Taynitskiy
{"title":"MPC Controllers in SIIR Epidemic Models","authors":"Nikita Kosyanov, E. Gubar, Vladislav Taynitskiy","doi":"10.3390/computation11090173","DOIUrl":"https://doi.org/10.3390/computation11090173","url":null,"abstract":"Infectious diseases are one of the most important problems of the modern world, for example, the periodic outbreaks of coronavirus infections caused by COVID-19, influenza, and many other respiratory diseases have significantly affected the economics of many countries. Hence, it is therefore important to minimize the economic damage, which includes both loss of work and treatment costs, quarantine costs, etc. Recent studies have presented many different models describing the dynamics of virus spread, which help to analyze the epidemic outbreaks. In the current work we focus on finding solutions that are robust to noise and take into account the dynamics of future changes in the process. We extend previous results by using a nonlinear model-predictive-control (MPC) controller to find effective controls. MPC is a computational mathematical method used in dynamically controlled systems with observations to find effective controls.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46557312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-03DOI: 10.3390/computation11090170
M. Trigka, Elias Dritsas
{"title":"Predicting the Occurrence of Metabolic Syndrome Using Machine Learning Models","authors":"M. Trigka, Elias Dritsas","doi":"10.3390/computation11090170","DOIUrl":"https://doi.org/10.3390/computation11090170","url":null,"abstract":"The term metabolic syndrome describes the clinical coexistence of pathological disorders that can lead to the development of cardiovascular disease and diabetes in the long term, which is why it is now considered an initial stage of the above clinical entities. Metabolic syndrome (MetSyn) is closely associated with increased body weight, obesity, and a sedentary lifestyle. The necessity of prevention and early diagnosis is imperative. In this research article, we experiment with various supervised machine learning (ML) models to predict the risk of developing MetSyn. In addition, the predictive ability and accuracy of the models using the synthetic minority oversampling technique (SMOTE) are illustrated. The evaluation of the ML models highlights the superiority of the stacking ensemble algorithm compared to other algorithms, achieving an accuracy of 89.35%; precision, recall, and F1 score values of 0.898; and an area under the curve (AUC) value of 0.965 using the SMOTE with 10-fold cross-validation.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41647252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-03DOI: 10.3390/computation11090171
Marina Rudenko, A. Kazak, N. Oleinikov, Angela N. Mayorova, Anna Dorofeeva, Dmitry Nekhaychuk, Olga Shutova
{"title":"Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture","authors":"Marina Rudenko, A. Kazak, N. Oleinikov, Angela N. Mayorova, Anna Dorofeeva, Dmitry Nekhaychuk, Olga Shutova","doi":"10.3390/computation11090171","DOIUrl":"https://doi.org/10.3390/computation11090171","url":null,"abstract":"Plant health plays an important role in influencing agricultural yields and poor plant health can lead to significant economic losses. Grapes are an important and widely cultivated plant, especially in the southern regions of Russia. Grapes are subject to a number of diseases that require timely diagnosis and treatment. Incorrect identification of diseases can lead to large crop losses. A neural network deep learning dataset of 4845 grape disease images was created. Eight categories of common grape diseases typical of the Black Sea region were studied: Mildew, Oidium, Anthracnose, Esca, Gray rot, Black rot, White rot, and bacterial cancer of grapes. In addition, a set of healthy plants was included. In this paper, a new selective search algorithm for monitoring the state of plant development based on computer vision in viticulture, based on YOLOv5, was considered. The most difficult part of object detection is object localization. As a result, the fast and accurate detection of grape health status was realized. The test results showed that the accuracy was 97.5%, with a model size of 14.85 MB. An analysis of existing publications and patents found using the search “Computer vision in viticulture” showed that this technology is original and promising. The developed software package implements the best approaches to the control system in viticulture using computer vision technologies. A mobile application was developed for practical use by the farmer. The developed software and hardware complex can be installed in any vehicle. Such a mobile system will allow for real-time monitoring of the state of the vineyards and will display it on a map. The novelty of this study lies in the integration of software and hardware. Decision support system software can be adapted to solve other similar problems. The software product commercialization plan is focused on the automation and robotization of agriculture, and will form the basis for adding the next set of similar software.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47835318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-03DOI: 10.3390/computation11090172
V. Miroshnikov, Oleksandr B. Savin, Vladimir Sobol, Vyacheslav Nikichanov
{"title":"Solving the Problem of Elasticity for a Layer with N Cylindrical Embedded Supports","authors":"V. Miroshnikov, Oleksandr B. Savin, Vladimir Sobol, Vyacheslav Nikichanov","doi":"10.3390/computation11090172","DOIUrl":"https://doi.org/10.3390/computation11090172","url":null,"abstract":"The main goal of deformable solid mechanics is to determine the stress–strain state of parts, structural elements, and their connections. The most accurate results of calculations of this state allow us to optimize design objects. However, not all models can be solved using exact methods. One such model is the problem of a layer with cylindrical embedded supports that are parallel to each other and the layer boundaries. In this work, the supports are represented by cylindrical cavities with zero displacements set on them. The layer is considered in Cartesian coordinates, and the cavities are in cylindrical coordinates. To solve the problem, the Lamé equation is used, where the basic solutions between different coordinate systems are linked using the generalized Fourier method. By satisfying the boundary conditions and linking different coordinate systems, a system of infinite linear algebraic equations is created. For numerical realization, the method of reduction is used to find the unknowns. The numerical analysis has shown that the boundary conditions are fulfilled with high accuracy, and the physical pattern of the stress distribution and the comparison with results of similar studies indicate the accuracy of the obtained results. The proposed method for calculating the stress–strain state can be applied to the calculation of structures whose model is a layer with cylindrical embedded supports. The numerical results of the work make it possible to predetermine the geometric parameters of the model to be designed.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46566045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ComputationPub Date : 2023-09-01DOI: 10.3390/computation11090169
Amir Younespour, Shaohong Cheng
{"title":"Impact of Cross-Tie Material Nonlinearity on the Dynamic Behavior of Shallow Flexible Cable Networks","authors":"Amir Younespour, Shaohong Cheng","doi":"10.3390/computation11090169","DOIUrl":"https://doi.org/10.3390/computation11090169","url":null,"abstract":"Cross-ties have proven their efficacy in mitigating vibrations in bridge stay cables. Several factors, such as cross-tie malfunctions due to slackening or snapping, as well as the utilization of high-energy dissipative materials, can introduce nonlinear restoring forces in the cross-ties. While previous studies have investigated the influence of the former on cable network dynamics, the evaluation of the impact of nonlinear cross-tie materials remains unexplored. In this current research, an existing analytical model of a two-shallow-flexible-cable network has been extended to incorporate the cross-tie material nonlinearity in the formulation. The harmonic balance method (HBM) is employed to determine the equivalent linear stiffness of the cross-ties. The dynamic response of a cable network containing nonlinear cross-ties is approximated by comparing it to an equivalent linear system. Additionally, the study delves into the effects of the cable vibration amplitude, cross-tie material properties, installation location, and the length ratio between constituent cables on both the fundamental frequency of the cable network and the equivalent linear stiffness of the cross-ties. The findings reveal that the presence of cross-tie nonlinearity significantly influences the in-plane modal response of the cable network. Not only the frequencies of all the modes are reduced, but the formation of local modes is delayed to a high order. In contrast to an earlier finding based on a linear cross-tie assumption, with nonlinearity present, moving a cross-tie towards the mid-span of a cable would not enhance the in-plane stiffness of the network. Moreover, the impact of the length ratio on the network in-plane stiffness and frequency is contingent on its combined effect on the cross-tie axial stiffness and the lateral stiffness of neighboring cables.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49534211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}