Geomatics (Basel, Switzerland)最新文献

筛选
英文 中文
Ensemble Machine Learning Approaches for Bathymetry Estimation in Multi-Spectral Images. 多光谱图像测深估计的集成机器学习方法。
Geomatics (Basel, Switzerland) Pub Date : 2025-09-01 Epub Date: 2025-07-22 DOI: 10.3390/geomatics5030034
Kazi Aminul Islam, Omar Abul-Hassan, Hongfang Zhang, Victoria Hill, Blake Schaeffer, Richard Zimmerman, Jiang Li
{"title":"Ensemble Machine Learning Approaches for Bathymetry Estimation in Multi-Spectral Images.","authors":"Kazi Aminul Islam, Omar Abul-Hassan, Hongfang Zhang, Victoria Hill, Blake Schaeffer, Richard Zimmerman, Jiang Li","doi":"10.3390/geomatics5030034","DOIUrl":"10.3390/geomatics5030034","url":null,"abstract":"<p><p>Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named CatBoostOpt, to estimate bathymetry based on high-resolution WorldView-2 (WV-2) multi-spectral optical satellite images. Cat-BoostOpt was demonstrated across the Florida Big Bend coastline, where the model learned correlations between in situ sound Navigation and Ranging (Sonar) bathymetry measurements and the corresponding multi-spectral reflectance values in WV-2 images to map bathymetry. We evaluated three different feature transformations as inputs for bathymetry estimation, including raw reflectance, log-linear, and log-ratio transforms of the raw reflectance value in WV-2 images. In addition, we investigated the contribution of each spectral band and found that utilizing all eight spectral bands in WV-2 images offers the best solution for handling complex water quality conditions. We compared CatBoostOpt with linear regression (LR), support vector machine (SVM), random forest (RF), AdaBoost, gradient boosting, and deep convolutional neural network (DCNN). CatBoostOpt with log-ratio transformed reflectance achieved the best performance with an average root mean square error (RMSE) of 0.34 and coefficient of determination (R<sup>2</sup>) of 0.87.</p>","PeriodicalId":521046,"journal":{"name":"Geomatics (Basel, Switzerland)","volume":"5 3","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145067584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信