Ensemble Machine Learning Approaches for Bathymetry Estimation in Multi-Spectral Images.

Geomatics (Basel, Switzerland) Pub Date : 2025-09-01 Epub Date: 2025-07-22 DOI:10.3390/geomatics5030034
Kazi Aminul Islam, Omar Abul-Hassan, Hongfang Zhang, Victoria Hill, Blake Schaeffer, Richard Zimmerman, Jiang Li
{"title":"Ensemble Machine Learning Approaches for Bathymetry Estimation in Multi-Spectral Images.","authors":"Kazi Aminul Islam, Omar Abul-Hassan, Hongfang Zhang, Victoria Hill, Blake Schaeffer, Richard Zimmerman, Jiang Li","doi":"10.3390/geomatics5030034","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named CatBoostOpt, to estimate bathymetry based on high-resolution WorldView-2 (WV-2) multi-spectral optical satellite images. Cat-BoostOpt was demonstrated across the Florida Big Bend coastline, where the model learned correlations between in situ sound Navigation and Ranging (Sonar) bathymetry measurements and the corresponding multi-spectral reflectance values in WV-2 images to map bathymetry. We evaluated three different feature transformations as inputs for bathymetry estimation, including raw reflectance, log-linear, and log-ratio transforms of the raw reflectance value in WV-2 images. In addition, we investigated the contribution of each spectral band and found that utilizing all eight spectral bands in WV-2 images offers the best solution for handling complex water quality conditions. We compared CatBoostOpt with linear regression (LR), support vector machine (SVM), random forest (RF), AdaBoost, gradient boosting, and deep convolutional neural network (DCNN). CatBoostOpt with log-ratio transformed reflectance achieved the best performance with an average root mean square error (RMSE) of 0.34 and coefficient of determination (R<sup>2</sup>) of 0.87.</p>","PeriodicalId":521046,"journal":{"name":"Geomatics (Basel, Switzerland)","volume":"5 3","pages":"34"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geomatics5030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional bathymetry measures require a large number of human hours, and many bathymetry records are obsolete or missing. Automated measures of bathymetry would reduce costs and increase accessibility for research and applications. In this paper, we optimized a recent machine learning model, named CatBoostOpt, to estimate bathymetry based on high-resolution WorldView-2 (WV-2) multi-spectral optical satellite images. Cat-BoostOpt was demonstrated across the Florida Big Bend coastline, where the model learned correlations between in situ sound Navigation and Ranging (Sonar) bathymetry measurements and the corresponding multi-spectral reflectance values in WV-2 images to map bathymetry. We evaluated three different feature transformations as inputs for bathymetry estimation, including raw reflectance, log-linear, and log-ratio transforms of the raw reflectance value in WV-2 images. In addition, we investigated the contribution of each spectral band and found that utilizing all eight spectral bands in WV-2 images offers the best solution for handling complex water quality conditions. We compared CatBoostOpt with linear regression (LR), support vector machine (SVM), random forest (RF), AdaBoost, gradient boosting, and deep convolutional neural network (DCNN). CatBoostOpt with log-ratio transformed reflectance achieved the best performance with an average root mean square error (RMSE) of 0.34 and coefficient of determination (R2) of 0.87.

多光谱图像测深估计的集成机器学习方法。
传统的测深测量需要大量的人力工时,而且许多测深记录已经过时或丢失。自动测深测量将降低成本,增加研究和应用的可及性。在本文中,我们优化了一个名为CatBoostOpt的最新机器学习模型,以基于高分辨率WorldView-2 (WV-2)多光谱光学卫星图像估计水深。Cat-BoostOpt在佛罗里达大弯海岸线上进行了演示,在那里,该模型学习了原位声音导航和测距(声纳)测深测量与WV-2图像中相应的多光谱反射值之间的相关性,以绘制测深图。我们评估了三种不同的特征变换作为水深估计的输入,包括WV-2图像中原始反射率值的原始反射率、对数线性和对数比变换。此外,我们研究了每个光谱波段的贡献,发现在WV-2图像中利用所有8个光谱波段是处理复杂水质条件的最佳解决方案。我们将CatBoostOpt与线性回归(LR)、支持向量机(SVM)、随机森林(RF)、AdaBoost、梯度增强和深度卷积神经网络(DCNN)进行了比较。采用对数比变换反射率的CatBoostOpt获得了最佳性能,平均均方根误差(RMSE)为0.34,决定系数(R2)为0.87。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信