BMC artificial intelligence..最新文献

筛选
英文 中文
End-to-end prediction of clinical outcomes in head and neck squamous cell carcinoma with foundation model-based multiple instance learning. 基于基础模型的多实例学习对头颈部鳞状细胞癌临床结果的端到端预测。
BMC artificial intelligence.. Pub Date : 2025-01-01 Epub Date: 2025-06-24 DOI: 10.1186/s44398-025-00003-8
Asier Rabasco Meneghetti, Marta Ligero Hernández, Jens-Peter Kühn, Steffen Löck, Zunamys Itzell Carrero, Raquel Perez-Lopez, Keno K Bressem, Titus J Brinker, Alexander T Pearson, Daniel Truhn, Sven Nebelung, Jakob Nikolas Kather
{"title":"End-to-end prediction of clinical outcomes in head and neck squamous cell carcinoma with foundation model-based multiple instance learning.","authors":"Asier Rabasco Meneghetti, Marta Ligero Hernández, Jens-Peter Kühn, Steffen Löck, Zunamys Itzell Carrero, Raquel Perez-Lopez, Keno K Bressem, Titus J Brinker, Alexander T Pearson, Daniel Truhn, Sven Nebelung, Jakob Nikolas Kather","doi":"10.1186/s44398-025-00003-8","DOIUrl":"10.1186/s44398-025-00003-8","url":null,"abstract":"<p><strong>Background: </strong>Foundation models have shown promise in medical AI by learning flexible features from large datasets, offering new opportunities for improving endpoint prediction. However, usage of foundation models for endpoint prediction using routine imaging in head and neck squamous cell carcinoma patients remains unexplored. Within this study, we evaluated the potential of foundation-model based multiple instance learning for prediction of 2-year overall survival, locoregional control and freedom from distant metastasis across three external head and neck squamous cell carcinoma patient cohorts using 2D, multiview and 3D approaches while comparing prediction and stratification performance with handcrafted radiomics and clinical baselines.</p><p><strong>Results: </strong>2D multiple-instance learning models achieved 2-year test area under the receiver-operator curve (AUROC) range of 0.75-0.84 for 2-year overall survival, 0.66-0.75 for 2-year locoregional control and 0.71-0.78 for 2-year freedom from distant metastasis across three different external cohorts, outperforming multiview and 3D multiple instance learning models (AUROC range: 0.50-0.77, p <math><mo>≥</mo></math> 0.15) and showing comparable or superior performance to handcrafted radiomics (AUROC range: 0.64-0.74, p <math><mo>≥</mo></math> 0.012). Significant stratification was observed from the 2D MIL models (hazard ratios: 2.14-4.77, p <math><mo>≤</mo></math> 0.039). 2D MIL models were also shown to learn endpoint-specific correlation patterns such as N-stage for 2-year freedom from distant metastasis prognosis. Multimodal enhancement of 2-year OS/FFDM (AUROC range: 0.82-0.87, p <math><mo>≤</mo></math> 0.018) for patients without human papilloma virus positive tumors.</p><p><strong>Conclusions: </strong>FM-based 2D MIL demonstrates promise in HNSCC risk prediction as well as stratification of clinical outcomes. The models match or outperform radiomics baselines, learning clinically-related patterns and showing enhancement of clinical baselines in non-human papilloma virus positive patients.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s44398-025-00003-8.</p>","PeriodicalId":520917,"journal":{"name":"BMC artificial intelligence..","volume":"1 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144556570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信