End-to-end prediction of clinical outcomes in head and neck squamous cell carcinoma with foundation model-based multiple instance learning.

BMC artificial intelligence.. Pub Date : 2025-01-01 Epub Date: 2025-06-24 DOI:10.1186/s44398-025-00003-8
Asier Rabasco Meneghetti, Marta Ligero Hernández, Jens-Peter Kühn, Steffen Löck, Zunamys Itzell Carrero, Raquel Perez-Lopez, Keno K Bressem, Titus J Brinker, Alexander T Pearson, Daniel Truhn, Sven Nebelung, Jakob Nikolas Kather
{"title":"End-to-end prediction of clinical outcomes in head and neck squamous cell carcinoma with foundation model-based multiple instance learning.","authors":"Asier Rabasco Meneghetti, Marta Ligero Hernández, Jens-Peter Kühn, Steffen Löck, Zunamys Itzell Carrero, Raquel Perez-Lopez, Keno K Bressem, Titus J Brinker, Alexander T Pearson, Daniel Truhn, Sven Nebelung, Jakob Nikolas Kather","doi":"10.1186/s44398-025-00003-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Foundation models have shown promise in medical AI by learning flexible features from large datasets, offering new opportunities for improving endpoint prediction. However, usage of foundation models for endpoint prediction using routine imaging in head and neck squamous cell carcinoma patients remains unexplored. Within this study, we evaluated the potential of foundation-model based multiple instance learning for prediction of 2-year overall survival, locoregional control and freedom from distant metastasis across three external head and neck squamous cell carcinoma patient cohorts using 2D, multiview and 3D approaches while comparing prediction and stratification performance with handcrafted radiomics and clinical baselines.</p><p><strong>Results: </strong>2D multiple-instance learning models achieved 2-year test area under the receiver-operator curve (AUROC) range of 0.75-0.84 for 2-year overall survival, 0.66-0.75 for 2-year locoregional control and 0.71-0.78 for 2-year freedom from distant metastasis across three different external cohorts, outperforming multiview and 3D multiple instance learning models (AUROC range: 0.50-0.77, p <math><mo>≥</mo></math> 0.15) and showing comparable or superior performance to handcrafted radiomics (AUROC range: 0.64-0.74, p <math><mo>≥</mo></math> 0.012). Significant stratification was observed from the 2D MIL models (hazard ratios: 2.14-4.77, p <math><mo>≤</mo></math> 0.039). 2D MIL models were also shown to learn endpoint-specific correlation patterns such as N-stage for 2-year freedom from distant metastasis prognosis. Multimodal enhancement of 2-year OS/FFDM (AUROC range: 0.82-0.87, p <math><mo>≤</mo></math> 0.018) for patients without human papilloma virus positive tumors.</p><p><strong>Conclusions: </strong>FM-based 2D MIL demonstrates promise in HNSCC risk prediction as well as stratification of clinical outcomes. The models match or outperform radiomics baselines, learning clinically-related patterns and showing enhancement of clinical baselines in non-human papilloma virus positive patients.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s44398-025-00003-8.</p>","PeriodicalId":520917,"journal":{"name":"BMC artificial intelligence..","volume":"1 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC artificial intelligence..","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44398-025-00003-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Foundation models have shown promise in medical AI by learning flexible features from large datasets, offering new opportunities for improving endpoint prediction. However, usage of foundation models for endpoint prediction using routine imaging in head and neck squamous cell carcinoma patients remains unexplored. Within this study, we evaluated the potential of foundation-model based multiple instance learning for prediction of 2-year overall survival, locoregional control and freedom from distant metastasis across three external head and neck squamous cell carcinoma patient cohorts using 2D, multiview and 3D approaches while comparing prediction and stratification performance with handcrafted radiomics and clinical baselines.

Results: 2D multiple-instance learning models achieved 2-year test area under the receiver-operator curve (AUROC) range of 0.75-0.84 for 2-year overall survival, 0.66-0.75 for 2-year locoregional control and 0.71-0.78 for 2-year freedom from distant metastasis across three different external cohorts, outperforming multiview and 3D multiple instance learning models (AUROC range: 0.50-0.77, p 0.15) and showing comparable or superior performance to handcrafted radiomics (AUROC range: 0.64-0.74, p 0.012). Significant stratification was observed from the 2D MIL models (hazard ratios: 2.14-4.77, p 0.039). 2D MIL models were also shown to learn endpoint-specific correlation patterns such as N-stage for 2-year freedom from distant metastasis prognosis. Multimodal enhancement of 2-year OS/FFDM (AUROC range: 0.82-0.87, p 0.018) for patients without human papilloma virus positive tumors.

Conclusions: FM-based 2D MIL demonstrates promise in HNSCC risk prediction as well as stratification of clinical outcomes. The models match or outperform radiomics baselines, learning clinically-related patterns and showing enhancement of clinical baselines in non-human papilloma virus positive patients.

Supplementary information: The online version contains supplementary material available at 10.1186/s44398-025-00003-8.

基于基础模型的多实例学习对头颈部鳞状细胞癌临床结果的端到端预测。
背景:基础模型通过从大型数据集中学习灵活的特征,在医疗人工智能中显示出前景,为改进终点预测提供了新的机会。然而,在头颈部鳞状细胞癌患者中使用常规影像学来预测终点的基础模型仍未探索。在这项研究中,我们评估了基于基础模型的多实例学习在预测2年总生存、局部区域控制和远离远处转移的潜力,使用2D、多视图和3D方法,同时将预测和分层性能与手工制作的放射组学和临床基线进行比较。结果:在三个不同的外部队列中,2D多实例学习模型在接受者-操作者曲线(AUROC)范围下的2年测试面积为0.75-0.84,2年局部区域控制为0.66-0.75,2年远离远处转移为0.71-0.78,优于多视图和3D多实例学习模型(AUROC范围:0.50-0.77,p≥0.15),并显示出与手工放射组学相当或更好的性能(AUROC范围:0.64-0.74, p≥0.012)。从二维MIL模型中观察到显著的分层(风险比:2.14-4.77,p≤0.039)。2D MIL模型也被证明可以学习终点特异性的相关模式,如2年无远处转移预后的n期。无人乳头瘤病毒阳性肿瘤患者2年OS/FFDM的多模式增强(AUROC范围:0.82-0.87,p≤0.018)。结论:基于fm的二维MIL在HNSCC风险预测和临床结果分层方面显示出前景。模型匹配或优于放射组学基线,学习临床相关模式,并显示非人类乳头瘤病毒阳性患者的临床基线增强。补充信息:在线版本包含补充资料,提供地址:10.1186/s44398-025-00003-8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信