Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)最新文献
Jiarui Xing, Nivetha Jayakumar, Nian Wu, Yu Wang, Frederick H Epstein, Miaomiao Zhang
{"title":"LaMoD: Latent Motion Diffusion Model For Myocardial Strain Generation.","authors":"Jiarui Xing, Nivetha Jayakumar, Nian Wu, Yu Wang, Frederick H Epstein, Miaomiao Zhang","doi":"10.1007/978-3-031-75291-9_13","DOIUrl":"10.1007/978-3-031-75291-9_13","url":null,"abstract":"<p><p>Motion and deformation analysis of cardiac magnetic resonance (CMR) imaging videos is crucial for assessing myocardial strain of patients with abnormal heart functions. Recent advances in deep learning-based image registration algorithms have shown promising results in predicting motion fields from routinely acquired CMR sequences. However, their accuracy often diminishes in regions with subtle appearance changes, with errors propagating over time. Advanced imaging techniques, such as displacement encoding with stimulated echoes (DENSE) CMR, offer highly accurate and reproducible motion data but require additional image acquisition, which poses challenges in busy clinical flows. In this paper, we introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos. More specifically, our method first employs an encoder from a pre-trained registration network that learns latent motion features (also considered as deformation-based shape features) from image sequences. Supervised by the ground-truth motion provided by DENSE, LaMoD then leverages a probabilistic latent diffusion model to reconstruct accurate motion from these extracted features. Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images; hence improving myocardial strain analysis in clinical settings for cardiac patients. Our code is publicly available at https://github.com/jr-xing/LaMoD.</p>","PeriodicalId":520307,"journal":{"name":"Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)","volume":"15275 ","pages":"164-177"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143695070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images.","authors":"Jadie Adams, Krithika Iyer, Shireen Y Elhabian","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Anatomical shape analysis plays a pivotal role in clinical research and hypothesis testing, where the relationship between form and function is paramount. Correspondence-based statistical shape modeling (SSM) facilitates population-level morphometrics but requires a cumbersome, potentially bias-inducing construction pipeline. Traditional construction pipelines require manual and computationally expensive steps, hindering their widespread use. Furthermore, such methods utilize templates or assumptions (e.g., linearity) that can bias or limit the expressivity of the variation captured by the constructed SSM. Recent advancements in deep learning have streamlined this process in inference by providing SSM prediction directly from unsegmented medical images. However, the proposed approaches are fully supervised and require utilizing a traditional SSM construction pipeline to create training data, thus inheriting the associated burdens and limitations. To address these challenges, we introduce a weakly supervised deep learning approach to predict SSM from images using point cloud supervision. Specifically, we propose reducing the supervision associated with the state-of-the-art fully Bayesian variational information bottleneck DeepSSM (BVIB-DeepSSM) model. BVIB-DeepSSM is an effective, principled framework for predicting probabilistic anatomical shapes from images with quantification of both aleatoric and epistemic uncertainties. Whereas the original BVIB-DeepSSM method requires strong supervision in the form of ground truth correspondence points, the proposed approach utilizes weak supervision via point cloud surface representations, which are more readily obtainable. Furthermore, the proposed approach learns correspondence in a completely data-driven manner without prior assumptions about the expected variability in shape cohort. Our experiments demonstrate that this approach yields similar accuracy and uncertainty estimation to the fully supervised scenario while substantially enhancing the feasibility of model training for SSM construction.</p>","PeriodicalId":520307,"journal":{"name":"Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)","volume":"15275 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MASSM: An End-to-End Deep Learning Framework for Multi-Anatomy Statistical Shape Modeling Directly From Images.","authors":"Janmesh Ukey, Tushar Kataria, Shireen Y Elhabian","doi":"10.1007/978-3-031-75291-9_12","DOIUrl":"10.1007/978-3-031-75291-9_12","url":null,"abstract":"<p><p>Statistical Shape Modeling (SSM) effectively analyzes anatomical variations within populations but is limited by the need for manual localization and segmentation, which relies on scarce medical expertise. Recent advances in deep learning have provided a promising approach that automatically generates statistical representations (as point distribution models or PDMs) from unsegmented images. Once trained, these deep learning-based models eliminate the need for manual segmentation for new subjects. Most deep learning methods still require manual prealignment of image volumes and bounding box specification around the target anatomy, leading to a partially manual inference process. Recent approaches facilitate anatomy localization but only estimate population-level statistical representations and cannot directly delineate anatomy in images. Additionally, they are limited to modeling a single anatomy. We introduce MASSM, a novel end-to-end deep learning framework that simultaneously localizes multiple anatomies, estimates population-level statistical representations, and delineates shape representations directly in image space. Our results show that MASSM, which delineates anatomy in image space and handles multiple anatomies through a multitask network, provides superior shape information compared to segmentation networks for medical imaging tasks. Estimating Statistical Shape Models (SSM) is a stronger task than segmentation, as it encodes a more robust statistical prior for the objects to be detected and delineated. MASSM allows for more accurate and comprehensive shape representations, surpassing the capabilities of traditional pixel-wise segmentation.</p>","PeriodicalId":520307,"journal":{"name":"Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)","volume":"15275 ","pages":"149-163"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}