Jiarui Xing, Nivetha Jayakumar, Nian Wu, Yu Wang, Frederick H Epstein, Miaomiao Zhang
{"title":"心肌应变产生的潜伏运动扩散模型。","authors":"Jiarui Xing, Nivetha Jayakumar, Nian Wu, Yu Wang, Frederick H Epstein, Miaomiao Zhang","doi":"10.1007/978-3-031-75291-9_13","DOIUrl":null,"url":null,"abstract":"<p><p>Motion and deformation analysis of cardiac magnetic resonance (CMR) imaging videos is crucial for assessing myocardial strain of patients with abnormal heart functions. Recent advances in deep learning-based image registration algorithms have shown promising results in predicting motion fields from routinely acquired CMR sequences. However, their accuracy often diminishes in regions with subtle appearance changes, with errors propagating over time. Advanced imaging techniques, such as displacement encoding with stimulated echoes (DENSE) CMR, offer highly accurate and reproducible motion data but require additional image acquisition, which poses challenges in busy clinical flows. In this paper, we introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos. More specifically, our method first employs an encoder from a pre-trained registration network that learns latent motion features (also considered as deformation-based shape features) from image sequences. Supervised by the ground-truth motion provided by DENSE, LaMoD then leverages a probabilistic latent diffusion model to reconstruct accurate motion from these extracted features. Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images; hence improving myocardial strain analysis in clinical settings for cardiac patients. Our code is publicly available at https://github.com/jr-xing/LaMoD.</p>","PeriodicalId":520307,"journal":{"name":"Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)","volume":"15275 ","pages":"164-177"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929565/pdf/","citationCount":"0","resultStr":"{\"title\":\"LaMoD: Latent Motion Diffusion Model For Myocardial Strain Generation.\",\"authors\":\"Jiarui Xing, Nivetha Jayakumar, Nian Wu, Yu Wang, Frederick H Epstein, Miaomiao Zhang\",\"doi\":\"10.1007/978-3-031-75291-9_13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motion and deformation analysis of cardiac magnetic resonance (CMR) imaging videos is crucial for assessing myocardial strain of patients with abnormal heart functions. Recent advances in deep learning-based image registration algorithms have shown promising results in predicting motion fields from routinely acquired CMR sequences. However, their accuracy often diminishes in regions with subtle appearance changes, with errors propagating over time. Advanced imaging techniques, such as displacement encoding with stimulated echoes (DENSE) CMR, offer highly accurate and reproducible motion data but require additional image acquisition, which poses challenges in busy clinical flows. In this paper, we introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos. More specifically, our method first employs an encoder from a pre-trained registration network that learns latent motion features (also considered as deformation-based shape features) from image sequences. Supervised by the ground-truth motion provided by DENSE, LaMoD then leverages a probabilistic latent diffusion model to reconstruct accurate motion from these extracted features. Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images; hence improving myocardial strain analysis in clinical settings for cardiac patients. Our code is publicly available at https://github.com/jr-xing/LaMoD.</p>\",\"PeriodicalId\":520307,\"journal\":{\"name\":\"Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)\",\"volume\":\"15275 \",\"pages\":\"164-177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929565/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-75291-9_13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shape in medical imaging : International Workshop, ShapeMI 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. ShapeMI (Workshop) (2024 : Marrakech, Morocco)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-75291-9_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
LaMoD: Latent Motion Diffusion Model For Myocardial Strain Generation.
Motion and deformation analysis of cardiac magnetic resonance (CMR) imaging videos is crucial for assessing myocardial strain of patients with abnormal heart functions. Recent advances in deep learning-based image registration algorithms have shown promising results in predicting motion fields from routinely acquired CMR sequences. However, their accuracy often diminishes in regions with subtle appearance changes, with errors propagating over time. Advanced imaging techniques, such as displacement encoding with stimulated echoes (DENSE) CMR, offer highly accurate and reproducible motion data but require additional image acquisition, which poses challenges in busy clinical flows. In this paper, we introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos. More specifically, our method first employs an encoder from a pre-trained registration network that learns latent motion features (also considered as deformation-based shape features) from image sequences. Supervised by the ground-truth motion provided by DENSE, LaMoD then leverages a probabilistic latent diffusion model to reconstruct accurate motion from these extracted features. Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images; hence improving myocardial strain analysis in clinical settings for cardiac patients. Our code is publicly available at https://github.com/jr-xing/LaMoD.