IEEE transactions on privacy最新文献

筛选
英文 中文
Blockchain Based Secure Federated Learning With Local Differential Privacy and Incentivization. 基于区块链的安全联盟学习与本地差异化隐私和激励。
IEEE transactions on privacy Pub Date : 2024-01-01 Epub Date: 2024-11-08 DOI: 10.1109/tp.2024.3487819
Saptarshi DE Chaudhury, Likhith Reddy Morreddigari, Matta Varun, Tirthankar Sengupta, Sandip Chakraborty, Shamik Sural, Jaideep Vaidya, Vijayalakshmi Atluri
{"title":"Blockchain Based Secure Federated Learning With Local Differential Privacy and Incentivization.","authors":"Saptarshi DE Chaudhury, Likhith Reddy Morreddigari, Matta Varun, Tirthankar Sengupta, Sandip Chakraborty, Shamik Sural, Jaideep Vaidya, Vijayalakshmi Atluri","doi":"10.1109/tp.2024.3487819","DOIUrl":"10.1109/tp.2024.3487819","url":null,"abstract":"<p><p>Interest in supporting Federated Learning (FL) using blockchains has grown significantly in recent years. However, restricting access to the trained models only to actively participating nodes remains a challenge even today. To address this concern, we propose a methodology that incentivizes model parameter sharing in an FL setup under Local Differential Privacy (LDP). The nodes that share less obfuscated data under LDP are awarded higher quantum of tokens, which they can later use to obtain session keys for accessing encrypted model parameters updated by the server. If one or more of the nodes do not contribute to the learning process by sharing their data, or share only highly perturbed data, they earn less number of tokens. As a result, such nodes may not be able to read the new global model parameters if required. Local parameter sharing and updating of global parameters are done using the distributed ledger of a permissioned blockchain, namely HyperLedger Fabric (HLF). Being a blockchain-based approach, the risk of a single point of failure is also mitigated. Appropriate chaincodes, which are smart contracts in the HLF framework, have been developed for implementing the proposed methodology. Results of an extensive set of experiments firmly establish the feasibility of our approach.</p>","PeriodicalId":519971,"journal":{"name":"IEEE transactions on privacy","volume":"1 ","pages":"31-44"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
U.S.-U.K. PETs Prize Challenge: Anomaly Detection via Privacy-Enhanced Federated Learning. 美英 PETs 奖挑战赛:通过隐私增强联合学习进行异常检测。
IEEE transactions on privacy Pub Date : 2024-01-01 Epub Date: 2024-04-23 DOI: 10.1109/tp.2024.3392721
Hafiz Asif, Sitao Min, Xinyue Wang, Jaideep Vaidya
{"title":"U.S.-U.K. PETs Prize Challenge: Anomaly Detection via Privacy-Enhanced Federated Learning.","authors":"Hafiz Asif, Sitao Min, Xinyue Wang, Jaideep Vaidya","doi":"10.1109/tp.2024.3392721","DOIUrl":"10.1109/tp.2024.3392721","url":null,"abstract":"<p><p>Privacy Enhancing Technologies (PETs) have the potential to enable collaborative analytics without compromising privacy. This is extremely important for collaborative analytics can allow us to really extract value from the large amounts of data that are collected in domains such as healthcare, finance, and national security, among others. In order to foster innovation and move PETs from the research labs to actual deployment, the U.S. and U.K. governments partnered together in 2021 to propose the PETs prize challenge asking for privacy-enhancing solutions for two of the biggest problems facing us today: financial crime prevention and pandemic response. This article presents the Rutgers ScarletPets privacy-preserving federated learning approach to identify anomalous financial transactions in a payment network system (PNS). This approach utilizes a two-step anomaly detection methodology to solve the problem. In the first step, features are mined based on account-level data and labels, and then a privacy-preserving encoding scheme is used to augment these features to the data held by the PNS. In the second step, the PNS learns a highly accurate classifier from the augmented data. Our proposed approach has two major advantages: 1) there is no noteworthy drop in accuracy between the federated and the centralized setting, and 2) our approach is flexible since the PNS can keep improving its model and features to build a better classifier without imposing any additional computational or privacy burden on the banks. Notably, our solution won the first prize in the US for its privacy, utility, efficiency, and flexibility.</p>","PeriodicalId":519971,"journal":{"name":"IEEE transactions on privacy","volume":"1 ","pages":"3-18"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信