Blockchain Based Secure Federated Learning With Local Differential Privacy and Incentivization.

IEEE transactions on privacy Pub Date : 2024-01-01 Epub Date: 2024-11-08 DOI:10.1109/tp.2024.3487819
Saptarshi DE Chaudhury, Likhith Reddy Morreddigari, Matta Varun, Tirthankar Sengupta, Sandip Chakraborty, Shamik Sural, Jaideep Vaidya, Vijayalakshmi Atluri
{"title":"Blockchain Based Secure Federated Learning With Local Differential Privacy and Incentivization.","authors":"Saptarshi DE Chaudhury, Likhith Reddy Morreddigari, Matta Varun, Tirthankar Sengupta, Sandip Chakraborty, Shamik Sural, Jaideep Vaidya, Vijayalakshmi Atluri","doi":"10.1109/tp.2024.3487819","DOIUrl":null,"url":null,"abstract":"<p><p>Interest in supporting Federated Learning (FL) using blockchains has grown significantly in recent years. However, restricting access to the trained models only to actively participating nodes remains a challenge even today. To address this concern, we propose a methodology that incentivizes model parameter sharing in an FL setup under Local Differential Privacy (LDP). The nodes that share less obfuscated data under LDP are awarded higher quantum of tokens, which they can later use to obtain session keys for accessing encrypted model parameters updated by the server. If one or more of the nodes do not contribute to the learning process by sharing their data, or share only highly perturbed data, they earn less number of tokens. As a result, such nodes may not be able to read the new global model parameters if required. Local parameter sharing and updating of global parameters are done using the distributed ledger of a permissioned blockchain, namely HyperLedger Fabric (HLF). Being a blockchain-based approach, the risk of a single point of failure is also mitigated. Appropriate chaincodes, which are smart contracts in the HLF framework, have been developed for implementing the proposed methodology. Results of an extensive set of experiments firmly establish the feasibility of our approach.</p>","PeriodicalId":519971,"journal":{"name":"IEEE transactions on privacy","volume":"1 ","pages":"31-44"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tp.2024.3487819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interest in supporting Federated Learning (FL) using blockchains has grown significantly in recent years. However, restricting access to the trained models only to actively participating nodes remains a challenge even today. To address this concern, we propose a methodology that incentivizes model parameter sharing in an FL setup under Local Differential Privacy (LDP). The nodes that share less obfuscated data under LDP are awarded higher quantum of tokens, which they can later use to obtain session keys for accessing encrypted model parameters updated by the server. If one or more of the nodes do not contribute to the learning process by sharing their data, or share only highly perturbed data, they earn less number of tokens. As a result, such nodes may not be able to read the new global model parameters if required. Local parameter sharing and updating of global parameters are done using the distributed ledger of a permissioned blockchain, namely HyperLedger Fabric (HLF). Being a blockchain-based approach, the risk of a single point of failure is also mitigated. Appropriate chaincodes, which are smart contracts in the HLF framework, have been developed for implementing the proposed methodology. Results of an extensive set of experiments firmly establish the feasibility of our approach.

基于区块链的安全联盟学习与本地差异化隐私和激励。
近年来,人们对使用区块链支持联邦学习(FL)的兴趣显著增长。然而,即使在今天,将对训练模型的访问限制为仅对积极参与的节点仍然是一个挑战。为了解决这个问题,我们提出了一种方法,在本地差分隐私(LDP)下激励FL设置中的模型参数共享。在LDP下共享较少混淆数据的节点被授予更多的令牌,它们可以稍后使用这些令牌来获取会话密钥,以访问服务器更新的加密模型参数。如果一个或多个节点没有通过共享数据为学习过程做出贡献,或者只共享高度扰动的数据,那么它们获得的令牌数量就会减少。因此,如果需要,这些节点可能无法读取新的全局模型参数。本地参数共享和全局参数更新是使用一个被许可的区块链的分布式账本,即HyperLedger Fabric (HLF)来完成的。作为一种基于区块链的方法,单点故障的风险也得到了缓解。已经开发了适当的链码,即HLF框架中的智能合约,用于实施所提出的方法。大量实验的结果有力地证明了我们方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信