{"title":"A systematic analysis and review of COVID-19 detection techniques using CT image","authors":"J. Ameera Beegom, T. Brindha","doi":"10.1080/21681163.2023.2219750","DOIUrl":"https://doi.org/10.1080/21681163.2023.2219750","url":null,"abstract":"","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89576122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancer prognosis with machine learning-based modified meta-heuristics and weighted gradient boosting algorithm","authors":"P. Saranya, P. Asha","doi":"10.1080/21681163.2023.2219772","DOIUrl":"https://doi.org/10.1080/21681163.2023.2219772","url":null,"abstract":"","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87202417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection and classification of COVID-19 disease using SWHO-based deep neural network classifier","authors":"Vanshika Rastogi, A. Jain","doi":"10.1080/21681163.2023.2219767","DOIUrl":"https://doi.org/10.1080/21681163.2023.2219767","url":null,"abstract":"","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87767571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr.Vinodkumar Jacob, G. Sagar, Kavita Goura, P. S. S. Pedalanka
{"title":"Brain tumor classification based on deep CNN and modified butterfly optimization algorithm","authors":"Dr.Vinodkumar Jacob, G. Sagar, Kavita Goura, P. S. S. Pedalanka","doi":"10.1080/21681163.2023.2219754","DOIUrl":"https://doi.org/10.1080/21681163.2023.2219754","url":null,"abstract":"","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74161109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep learning for few-shot white blood cell image classification and feature learning","authors":"Yixiang Deng, He Li","doi":"10.1080/21681163.2023.2219341","DOIUrl":"https://doi.org/10.1080/21681163.2023.2219341","url":null,"abstract":"","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81621671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ping-Cheng Ku, Alejandro Martin-Gomez, Cong Gao, Robert Grupp, Simon C Mears, Mehran Armand
{"title":"Towards 2D/3D Registration of the Preoperative MRI to Intraoperative Fluoroscopic Images for Visualization of Bone Defects.","authors":"Ping-Cheng Ku, Alejandro Martin-Gomez, Cong Gao, Robert Grupp, Simon C Mears, Mehran Armand","doi":"10.1080/21681163.2022.2152375","DOIUrl":"10.1080/21681163.2022.2152375","url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) is a medical imaging modality that allows for the evaluation of soft-tissue diseases and the assessment of bone quality. Preoperative MRI volumes are used by surgeons to identify defected bones, perform the segmentation of lesions, and generate surgical plans before the surgery. Nevertheless, conventional intraoperative imaging modalities such as fluoroscopy are less sensitive in detecting potential lesions. In this work, we propose a 2D/3D registration pipeline that aims to register preoperative MRI with intraoperative 2D fluoroscopic images. To showcase the feasibility of our approach, we use the core decompression procedure as a surgical example to perform 2D/3D femur registration. The proposed registration pipeline is evaluated using digitally reconstructed radiographs (DRRs) to simulate the intraoperative fluoroscopic images. The resulting transformation from the registration is later used to create overlays of preoperative MRI annotations and planning data to provide intraoperative visual guidance to surgeons. Our results suggest that the proposed registration pipeline is capable of achieving reasonable transformation between MRI and digitally reconstructed fluoroscopic images for intraoperative visualization applications.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10093566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin D Killeen, Jonas Winter, Wenhao Gu, Alejandro Martin-Gomez, Russell H Taylor, Greg Osgood, Mathias Unberath
{"title":"Mixed Reality Interfaces for Achieving Desired Views with Robotic X-ray Systems.","authors":"Benjamin D Killeen, Jonas Winter, Wenhao Gu, Alejandro Martin-Gomez, Russell H Taylor, Greg Osgood, Mathias Unberath","doi":"10.1080/21681163.2022.2154272","DOIUrl":"10.1080/21681163.2022.2154272","url":null,"abstract":"<p><p>Robotic X-ray C-arm imaging systems can precisely achieve any position and orientation relative to the patient. Informing the system, however, what pose exactly corresponds to a desired view is challenging. Currently these systems are operated by the surgeon using joysticks, but this interaction paradigm is not necessarily effective because users may be unable to efficiently actuate more than a single axis of the system simultaneously. Moreover, novel robotic imaging systems, such as the Brainlab Loop-X, allow for independent source and detector movements, adding even more complexity. To address this challenge, we consider complementary interfaces for the surgeon to command robotic X-ray systems effectively. Specifically, we consider three interaction paradigms: (1) the use of a pointer to specify the principal ray of the desired view relative to the anatomy, (2) the same pointer, but combined with a mixed reality environment to synchronously render digitally reconstructed radiographs from the tool's pose, and (3) the same mixed reality environment but with a virtual X-ray source instead of the pointer. Initial human-in-the-loop evaluation with an attending trauma surgeon indicates that mixed reality interfaces for robotic X-ray system control are promising and may contribute to substantially reducing the number of X-ray images acquired solely during \"fluoro hunting\" for the desired view or standard plane.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10344171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dennis K Njeru, Tushar M Athawale, Jessie J France, Chris R Johnson
{"title":"Quantifying and Visualizing Uncertainty for Source Localization in Electrocardiographic Imaging.","authors":"Dennis K Njeru, Tushar M Athawale, Jessie J France, Chris R Johnson","doi":"10.1080/21681163.2022.2113824","DOIUrl":"10.1080/21681163.2022.2113824","url":null,"abstract":"<p><p>Electrocardiographic imaging (ECGI) presents a clinical opportunity to noninvasively understand the sources of arrhythmias for individual patients. To help increase the effectiveness of ECGI, we provide new ways to visualize associated measurement and modeling errors. In this paper, we study source localization uncertainty in two steps: First, we perform Monte Carlo simulations of a simple inverse ECGI source localization model with error sampling to understand the variations in ECGI solutions. Second, we present multiple visualization techniques, including confidence maps, level-sets, and topology-based visualizations, to better understand uncertainty in source localization. Our approach offers a new way to study uncertainty in the ECGI pipeline.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9974258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fryderyk Victor Kögl, Étienne Léger, Nazim Haouchine, Erickson Torio, Parikshit Juvekar, Nassir Navab, Tina Kapur, Steve Pieper, Alexandra Golby, Sarah Frisken
{"title":"A Tool-free Neuronavigation Method based on Single-view Hand Tracking.","authors":"Fryderyk Victor Kögl, Étienne Léger, Nazim Haouchine, Erickson Torio, Parikshit Juvekar, Nassir Navab, Tina Kapur, Steve Pieper, Alexandra Golby, Sarah Frisken","doi":"10.1080/21681163.2022.2163428","DOIUrl":"10.1080/21681163.2022.2163428","url":null,"abstract":"<p><p>This work presents a novel tool-free neuronavigation method that can be used with a single RGB commodity camera. Compared with freehand craniotomy placement methods, the proposed system is more intuitive and less error prone. The proposed method also has several advantages over standard neuronavigation platforms. First, it has a much lower cost, since it doesn't require the use of an optical tracking camera or electromagnetic field generator, which are typically the most expensive parts of a neuronavigation system, making it much more accessible. Second, it requires minimal setup, meaning that it can be performed at the bedside and in circumstances where using a standard neuronavigation system is impractical. Our system relies on machine-learning-based hand pose estimation that acts as a proxy for optical tool tracking, enabling a 3D-3D pre-operative to intra-operative registration. Qualitative assessment from clinical users showed that the concept is clinically relevant. Quantitative assessment showed that on average a target registration error (TRE) of 1.3cm can be achieved. Furthermore, the system is framework-agnostic, meaning that future improvements to hand-tracking frameworks would directly translate to a higher accuracy.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9821499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayi Xu, Gaspard Thevenon, Timothee Chabat, Matthew McCormick, Forrest Li, Tom Birdsong, Ken Martin, Yueh Lee, Stephen Aylward
{"title":"Interactive, in-browser cinematic volume rendering of medical images.","authors":"Jiayi Xu, Gaspard Thevenon, Timothee Chabat, Matthew McCormick, Forrest Li, Tom Birdsong, Ken Martin, Yueh Lee, Stephen Aylward","doi":"10.1080/21681163.2022.2145239","DOIUrl":"10.1080/21681163.2022.2145239","url":null,"abstract":"<p><p>The diversity and utility of cinematic volume rendering (CVR) for medical image visualization have grown rapidly in recent years. At the same time, volume rendering on augmented and virtual reality systems is attracting greater interest with the advance of the WebXR standard. This paper introduces CVR extensions to the open-source visualization toolkit (vtk.js) that supports WebXR. This paper also summarizes two studies that were conducted to evaluate the speed and quality of various CVR techniques on a variety of medical data. This work is intended to provide the first open-source solution for CVR that can be used for in-browser rendering as well as for WebXR research and applications. This paper aims to help medical imaging researchers and developers make more informed decision when selecting CVR algorithms for their applications. Our software and this paper also provide a foundation for new research and product development at the intersection of medical imaging, web visualization, XR, and CVR.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9781799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}