SolarPub Date : 2024-07-25DOI: 10.3390/solar4030018
Neri Banti, C. Ciacci, F. Bazzocchi, Vincenzo Di Naso
{"title":"Enhancing Industrial Buildings’ Performance through Informed Decision Making: A Generative Design for Building-Integrated Photovoltaic and Shading System Optimization","authors":"Neri Banti, C. Ciacci, F. Bazzocchi, Vincenzo Di Naso","doi":"10.3390/solar4030018","DOIUrl":"https://doi.org/10.3390/solar4030018","url":null,"abstract":"The Italian industrial sector contains 22% of the final energy demand due to the poor energy performance of manufacturing buildings. This proposed study aimed to evaluate retrofit interventions for existing industrial buildings integrating photovoltaic solutions into the external envelope to improve both the environmental sustainability and the facade performance. The methodology is based on an innovative procedure including BIM and generative design tools. Starting from the Revit model of a representative case study, interoperability with energy analysis plugins via Grasshopper were exploited to optimize the differently oriented facade layout of photovoltaic modules to maximize the electricity production. In the case of comparable facade sizes, the building orientation had a minor impact on the results, although a southern exposure was preferable. The optimized configuration involved the installation of PV panels with a tilt angle ranging from −35° to −75°. The best compromise solution between the panel surface area and energy production during the summer solstice involves 466 m2 of PV modules. The design-optioneering approach was used to define possible alternatives to be explored for the possible installation of solar shading systems on existing windows. In this case, the impact on visual comfort within the working environment was chosen as a reference parameter, along with the value of the indoor air temperature. A decrease in this parameter equal to 0.46 was registered for the solution with horizontal (or nearly horizontal) shaders and a spacing ranging between 0.2 and 0.4. The integration of the BIM environment with generative design tools effectively assists decision-making processes for the selection of technological solutions in the building sector.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"46 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-07-18DOI: 10.3390/solar4030017
E. Kaufhold, J. Meyer, J. Myrzik, P. Schegner
{"title":"Limits of Harmonic Stability Analysis for Commercially Available Single-Phase Inverters for Photovoltaic Applications","authors":"E. Kaufhold, J. Meyer, J. Myrzik, P. Schegner","doi":"10.3390/solar4030017","DOIUrl":"https://doi.org/10.3390/solar4030017","url":null,"abstract":"The growth of renewables in public energy networks requires suitable strategies to assess the stable operation of the respective power electronic devices, e.g., inverters. Different assessment methods can be performed with regard to the available knowledge and the assessment objective, e.g., a specific frequency range or the input signal characteristics that are typically classified into small-signal and large-signal disturbances. This paper addresses the limits of the measurement-based small-signal stability analysis in the harmonic frequency range of commercially available single-phase inverters for photovoltaic applications. The harmonic stability is analyzed, and the results for a sinusoidal background voltage and distorted background voltages are assessed based on measurements. The measurements prove that even in the harmonic frequency range, the harmonic stability analysis can only provide a sufficient but not a necessary condition in terms of the statement towards an instable operation.","PeriodicalId":517023,"journal":{"name":"Solar","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141824637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-05-21DOI: 10.3390/solar4020014
Ziad Hunaiti, Zayed Huneiti
{"title":"Prospects and Obstacles Associated with Community Solar and Wind Farms in Jordan’s Suburban Areas","authors":"Ziad Hunaiti, Zayed Huneiti","doi":"10.3390/solar4020014","DOIUrl":"https://doi.org/10.3390/solar4020014","url":null,"abstract":"Jordan faces significant, immediate challenges of enhancing energy security while mitigating greenhouse gas emissions. One of the most promising approaches to achieve sustainable development, energy security, and environmental conservation is to increase the integration of renewable energy into electricity generation. To this end, the Jordanian government aims to expand investments in the green energy sector, with solar and wind energy expected to play a crucial role in meeting energy demands and promoting environmental sustainability. This paper aims to examine the distinct dynamics, challenges, obstacles, and potential solutions related to establishing community solar and wind farms in suburban areas of Jordan. It seeks to highlight the opportunities and barriers influencing the adoption of sustainable energy in the country. Evaluation results from engaging 320 key stakeholders were obtained through a questionnaire, and after comprehensive analysis, it became evident that the benefits and positive aspects of solar and wind farms outweigh their drawbacks and obstacles. These insights can be useful in guiding policies and practices to make renewable energy community projects a reality within Jordan’s suburban areas. Additionally, the findings may serve as a valuable benchmark for other regions facing similar challenges in their pursuit of a sustainable energy future.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"123 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-05-14DOI: 10.3390/solar4020013
F. Daniel-Durandt, A. J. Rix
{"title":"New Decomposition Models for Hourly Direct Normal Irradiance Estimations for Southern Africa","authors":"F. Daniel-Durandt, A. J. Rix","doi":"10.3390/solar4020013","DOIUrl":"https://doi.org/10.3390/solar4020013","url":null,"abstract":"This research develops and validates new decomposition models for hourly direct Normal Irradiance (DNI) estimations for Southern African data. Localised models were developed using data collected from the Southern African Universities Radiometric Network (SAURAN). Clustered areas within Southern Africa were identified, and the developed cluster decomposition models highlighted the potential advantages of grouping data based on shared geographical and climatic attributes. This clustering approach could enhance decomposition model performance, particularly when local data are limited or when data are available from multiple nearby stations. Further, a regional Southern African decomposition model, which encompasses a wide spectrum of climatic regions and geographic locations, exhibited notable improvements over the baseline models despite occasional overestimation or underestimation. The results demonstrated improved DNI estimation accuracy compared to the baseline models across all testing and validation datasets. These outcomes suggest that utilising a localised model can significantly enhance DNI estimations for Southern Africa and potentially for developing similar models in diverse geographic regions worldwide. The overall metrics affirm the substantial advancement achieved with the regional model as an accurate decomposition model representing Southern Africa. Two stations were used as a validation study, as an application example where no localised model was available, and the cluster and regional models both outperformed the comparative decomposition models. This study focused on validating the model for hourly DNI in Southern Africa within a range of Kt-intervals from 0.175 to 0.875, and the range could be expanded and validated for future studies. Implementing accurate decomposition models in developing countries can accelerate the adoption of renewable energy sources, diminishing reliance on coal and fossil fuels.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"17 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140980659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-04-06DOI: 10.3390/solar4020011
Luis E. Garces-Palacios, Carlos D. Rodríguez-Gallegos, Fernando Vaca-Urbano, Manuel S. Alvarez‐Alvarado, Oktoviano Gandhi, César A. Rodríguez-Gallegos
{"title":"Optimal Design of a Hybrid Solar–Battery–Diesel System: A Case Study of Galapagos Islands","authors":"Luis E. Garces-Palacios, Carlos D. Rodríguez-Gallegos, Fernando Vaca-Urbano, Manuel S. Alvarez‐Alvarado, Oktoviano Gandhi, César A. Rodríguez-Gallegos","doi":"10.3390/solar4020011","DOIUrl":"https://doi.org/10.3390/solar4020011","url":null,"abstract":"In this study, the sizing problem of hybrid diesel–photovoltaic–battery systems was determined using a particle swarm optimization approach. The goal was to optimize the number of solar panels and batteries that could be installed to reduce the overall cost of an isolated grid system, originally powered by diesel generators, located on Isabela Island in the Galapagos, Ecuador. In this study, real solar radiation and temperature profiles were used, as well as the load demand and electrical distribution system relative to this island. The results reveal that the total cost for the proposed approach is lower as it reaches the global optimal solution. It also highlights the advantage of a hybrid diesel–photovoltaic–battery (DG-PV-BAT) system compared to conventional systems operated exclusively by diesel generators (DGs) and systems made up of DGs and PV panels; compared to them, a reduction in diesel consumption and total cost (71% and 56%, respectively) is achieved. The DG-PV-BAT system also considerably improves environmental factors and the quality of the power line. This study demonstrates the advantages of hybridizing systems isolated from the network through the proposed approach.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"45 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140734113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-04-03DOI: 10.3390/solar4020010
Harigovind G. Menon, A. Amin, Xiaomeng Duan, S. N. Vijayaraghavan, Jacob Wall, Wenjun Xiang, K. Khawaja, Feng Yan
{"title":"Exploring the Feasibility and Performance of Perovskite/Antimony Selenide Four-Terminal Tandem Solar Cells","authors":"Harigovind G. Menon, A. Amin, Xiaomeng Duan, S. N. Vijayaraghavan, Jacob Wall, Wenjun Xiang, K. Khawaja, Feng Yan","doi":"10.3390/solar4020010","DOIUrl":"https://doi.org/10.3390/solar4020010","url":null,"abstract":"The tandem solar cell presents a potential solution to surpass the Shockley–Queisser limit observed in single-junction solar cells. However, creating a tandem device that is both cost-effective and highly efficient poses a significant challenge. In this study, we present proof of concept for a four-terminal (4T) tandem solar cell utilizing a wide bandgap (1.6–1.8 eV) perovskite top cell and a narrow bandgap (1.2 eV) antimony selenide (Sb2Se3) bottom cell. Using a one-dimensional (1D) solar cell capacitance simulator (SCAPS), our calculations indicate the feasibility of this architecture, projecting a simulated device performance of 23% for the perovskite/Sb2Se3 4T tandem device. To validate this, we fabricated two wide bandgap semitransparent perovskite cells with bandgaps of 1.6 eV and 1.77 eV, respectively. These were then mechanically stacked with a narrow bandgap antimony selenide (1.2 eV) to create a tandem structure, resulting in experimental efficiencies exceeding 15%. The obtained results demonstrate promising device performance, showcasing the potential of combining perovskite top cells with the emerging, earth-abundant antimony selenide thin film solar technology to enhance overall device efficiency.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"549 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140750139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-03-26DOI: 10.3390/solar4020009
Kenneth M. Hughes, Chris C. Phillips
{"title":"A Quantitative Analysis of the Need for High Conversion Efficiency PV Technologies in Carbon Mitigation Strategies","authors":"Kenneth M. Hughes, Chris C. Phillips","doi":"10.3390/solar4020009","DOIUrl":"https://doi.org/10.3390/solar4020009","url":null,"abstract":"We consider the restrictions on photovoltaic (PV) capacity that are caused by limitations on where panels can be sited and find quantitative evidence for the need for high efficiencies. We define 15% of the UK’s energy consumption as a “significant” contribution and, with London as an exemplar, we perform an idealised calculation that makes the most optimistic possible assumptions about the capabilities of future PV technologies and use published surveys on energy usage, dwelling type and insolation. We find that covering every UK domestic roof with the highest power conversion efficiency (PCE) solar panels currently commercially available could produce up to 9% of the UK’s energy. A 15% contribution would require PV technologies with >37% PCE, more than the theoretical Shockley–Queisser limit. Replacing the idealising assumptions with more realistic estimates increases this by 2–3 times. Alternatively, a solar farm using the currently available PCEs would require a politically challenging ~1200 km2 of new land, roughly the area of Greater London, for this 15% contribution. We conclude that PCEs must be driven higher than even the Shockley–Queisser limit for PV to play a significant part in carbon mitigation.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"113 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140380512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Statistical Framework for Optimal Sizing of Grid-Connected Photovoltaic–Battery Systems for Peak Demand Reduction to Flatten Daily Load Profiles","authors":"Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan","doi":"10.3390/solar4010008","DOIUrl":"https://doi.org/10.3390/solar4010008","url":null,"abstract":"Integrating photovoltaic (PV) systems plays a pivotal role in the global shift toward renewable energy, offering significant environmental benefits. However, the PV installation should provide financial benefits for the utilities. Considering that the utility companies often incur costs for both energy and peak demand, PV installations should aim to reduce both energy and peak demand charges. Although PV systems can reduce energy needs during the day, their effectiveness in reducing peak demand, particularly in the early morning and late evening, is limited, as PV generation is zero or negligible at those times. To address this limitation, battery storage systems are utilized for storing energy during off-peak hours and releasing it during peak times. However, finding the optimal size of PV and the accompanying battery remains a challenge. While valuable optimization models have been developed to determine the optimal size of PV–battery systems, a certain gap remains where peak demand reduction has not been sufficiently addressed in the optimization process. Recognizing this gap, this study proposes a novel statistical model to optimize PV–battery system size for peak demand reduction. The model aims to flatten 95% of daily peak demands up to a certain demand threshold, ensuring consistent energy supply and financial benefit for utility companies. A straightforward and effective search methodology is employed to determine the optimal system sizes. Additionally, the model’s effectiveness is rigorously tested through a modified Monte Carlo simulation coupled with time series clustering to generate various scenarios to assess performance under different conditions. The results indicate that the optimal PV–battery system successfully flattens 95% of daily peak demand with a selected threshold of 2000 kW, yielding a financial benefit of USD 812,648 over 20 years.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"19 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140244172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-03-11DOI: 10.3390/solar4010007
Gurleen Kaur, Antonio J. Olivares, P. Roca i Cabarrocas
{"title":"Development of n-Type, Passivating Nanocrystalline Silicon Oxide Films via Plasma-Enhanced Chemical Vapor Deposition","authors":"Gurleen Kaur, Antonio J. Olivares, P. Roca i Cabarrocas","doi":"10.3390/solar4010007","DOIUrl":"https://doi.org/10.3390/solar4010007","url":null,"abstract":"Nanocrystalline silicon oxide (nc-SiOx:H) is a multipurpose material with varied applications in solar cells as a transparent front contact, intermediate reflector, back reflector layer, and even tunnel layer for passivating contacts, owing to the easy tailoring of its optical properties. In this work, we systematically investigate the influence of the gas mixture (SiH4, CO2, PH3, and H2), RF power, and process pressure on the optical, structural, and passivation properties of thin n-type nc-SiOx:H films prepared in an industrial, high-throughput, plasma-enhanced chemical vapor deposition (PECVD) reactor. We provide a detailed description of the n-type nc-SiOx:H material development using various structural and optical characterization techniques (scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Raman spectroscopy, and spectroscopic ellipsometry) with a focus on the relationship between the material properties and the passivation they provide to n-type c-Si wafers characterized by their effective carrier lifetime (τeff). Furthermore, we also outline the parameters to be kept in mind while developing different n-type nc-SiOx:H layers for different solar cell applications. We report a tunable optical gap (1.8–2.3 eV) for our n-type nc-SiOx:H films as well as excellent passivation properties with a τeff of up to 4.1 ms (implied open-circuit voltage (iVoc)~715 mV) before annealing. Oxygen content plays an important role in determining the crystallinity and hence passivation quality of the deposited nanocrystalline silicon oxide films.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"96 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140251940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SolarPub Date : 2024-03-04DOI: 10.3390/solar4010006
Noor AlQallaf, Rami Ghannam
{"title":"Immersive Learning in Photovoltaic Energy Education: A Comprehensive Review of Virtual Reality Applications","authors":"Noor AlQallaf, Rami Ghannam","doi":"10.3390/solar4010006","DOIUrl":"https://doi.org/10.3390/solar4010006","url":null,"abstract":"This paper presents a comprehensive and systematic review of virtual reality (VR) as an innovative educational tool specifically for solar photovoltaic energy systems. VR technology, with its immersive and interactive capabilities, offers a unique platform for in-depth learning and practical training in the field of solar energy. The use of VR in this context not only enhances the understanding of solar photovoltaic (PV) systems but also provides a hands-on experience that is crucial for developing the necessary skills in this rapidly evolving field. Among the 6814 articles initially identified, this systematic review specifically examined 15 articles that focused on the application of VR in PV education. These selected articles demonstrate VR’s ability to accurately simulate real-world environments and scenarios related to solar energy, providing an in-depth exploration of its practical applications in this field. By offering a realistic and detailed exploration of PV systems, VR enables learners to gain a deeper understanding of harnessing, managing and using such a vast energy resource. The paper further discusses the implications of employing VR in educational settings, highlighting its potential to change the way solar energy professionals are trained, thereby contributing significantly to the acceleration of photovoltaic technology adoption and its integration into sustainable energy solutions.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"29 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140080661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}