Proceedings of the AAAI Symposium Series最新文献

筛选
英文 中文
Perception-Dominant Control Types for Human/Machine Systems 人机系统的感知主导控制类型
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31177
Ted Goranson
{"title":"Perception-Dominant Control Types for Human/Machine Systems","authors":"Ted Goranson","doi":"10.1609/aaaiss.v3i1.31177","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31177","url":null,"abstract":"We explore a novel approach to complex domain modelling by emphasising primitives based on perception. The usual approach either focuses on actors or cognition associated with tokens that convey information. In related research, we have examined using effects and/or outcomes as primitives, and influences as the generator of those outcomes via categoric functors. \u0000 That approach (influences, effects) has advantages: it leverages what is known and supports the expanded logics we use, where we want to anticipate and engineer possible futures. But it has weaknesses when placed in a dynamic human-machine system where what is perceived or assumed matters more than what is known. The work reported here builds on previous advances in type specification and reasoning to ‘move the primitives forward’ more toward situation encounter and away from situation understanding. \u0000 The goal is in the context of shared human-machine systems where:\u0000• reaction times are shorter than the traditional ingestion/comprehension/response loop can support;\u0000• situations that are too complex or dynamic for current comprehension by any means;\u0000• there simply is insufficient knowledge about governing situations for the comprehension model to support action; and/or,\u0000• the many machine/human and system/system interfaces that are incapable of conveying the needed insights; that is, the communication channels choke the information or influence flows.\u0000 While the approach is motivated by the above unfriendly conditions, we expect significant benefits. We will explore these but engineer toward a federated decision paradigm where decisions by local human, machine or synthesis are not whole-situation-aware, but that collectively ‘swarm’ locally across the larger system to be more effective, ‘wiser’ than a convention paradigm may produce.\u0000 The supposed implementation strategy will be through extending an existing ‘playbooks as code’ project whose goals are to advise on local action by modelling and gaming complex system dynamics. A sponsoring context is ‘grey zone’ competition that avoids armed conflict, but that can segue to a mixed system course of action advisory. The general context is a costly ‘blue swan’ risk in large commercial and government enterprises.\u0000 The method will focus on patterns and relationships in synthetic categories used to model type transitions within topological models of system influence. One may say this is applied intuitionistic type theory, following mechanisms generally described by synthetic differential geometry. In this context, the motivating supposition of this study is that information-carrying influence channels are best modelled in our challenging domain as perceived types rather than understood types.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"100 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rule-Based Explanations of Machine Learning Classifiers Using Knowledge Graphs 使用知识图谱对机器学习分类器进行基于规则的解释
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31200
Orfeas Menis Mastromichalakis, Edmund Dervakos, A. Chortaras, G. Stamou
{"title":"Rule-Based Explanations of Machine Learning Classifiers Using Knowledge Graphs","authors":"Orfeas Menis Mastromichalakis, Edmund Dervakos, A. Chortaras, G. Stamou","doi":"10.1609/aaaiss.v3i1.31200","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31200","url":null,"abstract":"The use of symbolic knowledge representation and reasoning as a way to resolve the lack of transparency of machine learning classifiers is a research area that has lately gained a lot of traction. In this work, we use knowledge graphs as the underlying framework providing the terminology for representing explanations for the operation of a machine learning classifier escaping the constraints of using the features of raw data as a means to express the explanations, providing a promising solution to the problem of the understandability of explanations. In particular, given a description of the application domain of the classifier in the form of a knowledge graph, we introduce a novel theoretical framework for representing explanations of its operation, in the form of query-based rules expressed in the terminology of the knowledge graph. This allows for explaining opaque black-box classifiers, using terminology and information that is independent of the features of the classifier and its domain of application, leading to more understandable explanations but also allowing the creation of different levels of explanations according to the final end-user.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"22 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ethical Considerations of Generative AI: A Survey Exploring the Role of Decision Makers in the Loop 生成式人工智能的伦理考量:探索环路中决策者角色的调查
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31243
Yohn Jairo Parra Bautista, Carlos Theran, Richard A. Aló
{"title":"Ethical Considerations of Generative AI: A Survey Exploring the Role of Decision Makers in the Loop","authors":"Yohn Jairo Parra Bautista, Carlos Theran, Richard A. Aló","doi":"10.1609/aaaiss.v3i1.31243","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31243","url":null,"abstract":"We explore the foresighted concerns that Norbert Wiener voiced in 1960 about the potential of machines to learn and create strategies that could not be anticipated, drawing parallels to the fable \"The Sorcerer's Apprentice\" by Goethe. The progress in artificial intelligence (AI) has brought these worries back to the forefront, as shown by a survey AI Impacts conducted in 2022 with more than 700 machine learning researchers. This survey found a five percentage probability that advanced AI might cause \"extremely adverse\" outcomes, including the possibility of human extinction. Importantly, the introduction of OpenAI's ChatGPT, powered by GPT-4, has led to a surge in entrepreneurial activities, highlighting the ease of use of large language models (LLMs).AI's potential for adverse outcomes, such as military control and unregulated AI races, is explored alongside concerns about AI's role in governance, healthcare, media portrayal, and surpassing human intelligence. Given their transformative impact on content creation, the prominence of generative AI tools such as ChatGPT is noted. The societal assessment of Artificial Intelligence (AI) has grown increasingly intricate and pressing in tandem with the rapid evolution of this technology. As AI continues to advance at a swift pace, the need to comprehensively evaluate its societal implications has become more complex and urgent, necessitating a thorough examination of its potential impact on various domains such as governance, healthcare, media portrayal, and surpassing human intelligence. This assessment is crucial in addressing ethical concerns related to bias, data misuse, technical limitations, and transparency gaps, and in integrating ethical and legal principles throughout AI algorithm lifecycles to ensure alignment with societal well-being. Furthermore, the urgency of addressing the societal implications of AI is underscored by the need for healthcare workforce upskilling and ethical considerations in the era of AI-assisted medicine, emphasizing the critical importance of integrating societal well-being into the development and deployment of AI technologies. Our study entails an examination of the ethical quandaries and obstacles presented when developing methods to evaluate and predict the broader societal impacts of AI on decision-making processes involving the generating of images, videos, and textual content.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"85 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Criterion Client Selection for Efficient Federated Learning 高效联盟学习的多标准客户端选择
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31227
Mehreen Tahir, Muhammad Intizar Ali
{"title":"Multi-Criterion Client Selection for Efficient Federated Learning","authors":"Mehreen Tahir, Muhammad Intizar Ali","doi":"10.1609/aaaiss.v3i1.31227","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31227","url":null,"abstract":"Federated Learning (FL) has received tremendous attention as a decentralized machine learning (ML) framework that allows distributed data owners to collaboratively train a global model without sharing raw data. Since FL trains the model directly on edge devices, the heterogeneity of participating clients in terms of data distribution, hardware capabilities and network connectivity can significantly impact the overall performance of FL systems. Optimizing for model accuracy could extend the training time due to the diverse and resource-constrained nature of edge devices while minimizing training time could compromise the model's accuracy. Effective client selection thus becomes crucial to ensure that the training process is not only efficient but also capitalizes on the diverse data and computational capabilities of different devices. To this end, we propose FedPROM, a novel framework that tackles client selection in FL as a multi-criteria optimization problem. By leveraging the PROMETHEE method, FedPROM ranks clients based on their suitability for a given FL task, considering multiple criteria such as system resources, network conditions, and data quality. This approach allows FedPROM to dynamically select the most appropriate set of clients for each learning round, optimizing both model accuracy and training efficiency. Our evaluations on diverse datasets demonstrate that FedPROM outperforms several state-of-the-art FL client selection protocols in terms of convergence speed, and accuracy, highlighting the framework's effectiveness and the importance of multi-criteria client selection in FL.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"30 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human-like Learning in Temporally Structured Environments 在时间结构环境中进行类人学习
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31273
Matt Jones, Tyler R. Scott, Michael C. Mozer
{"title":"Human-like Learning in Temporally Structured Environments","authors":"Matt Jones, Tyler R. Scott, Michael C. Mozer","doi":"10.1609/aaaiss.v3i1.31273","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31273","url":null,"abstract":"Natural environments have correlations at a wide range of timescales. Human cognition is tuned to this temporal structure, as seen by power laws of learning and memory, and by spacing effects whereby the intervals between repeated training data affect how long knowledge is retained. Machine learning is instead dominated by batch iid training or else relatively simple nonstationarity assumptions such as random walks or discrete task sequences.\u0000\u0000The main contributions of our work are:\u0000(1) We develop a Bayesian model formalizing the brain's inductive bias for temporal structure\u0000and show our model accounts for key features of human learning and memory.\u0000(2) We translate the model into a new gradient-based optimization technique for neural networks that endows them with human-like temporal inductive bias and improves their performance in realistic nonstationary tasks.\u0000\u0000Our technical approach is founded on Bayesian inference over 1/f noise, a statistical signature of many natural environments with long-range, power law correlations. We derive a new closed-form solution to this problem by treating the state of the environment as a sum of processes on different timescales and applying an extended Kalman filter to learn all timescales jointly. \u0000\u0000We then derive a variational approximation of this model for training neural networks, which can be used as a drop-in replacement for standard optimizers in arbitrary architectures. Our optimizer decomposes each weight in the network as a sum of subweights with different learning and decay rates and tracks their joint uncertainty. Thus knowledge becomes distributed across timescales, enabling rapid adaptation to task changes while retaining long-term knowledge and avoiding catastrophic interference. Simulations show improved performance in environments with realistic multiscale nonstationarity.\u0000\u0000Finally, we present simulations showing our model gives essentially parameter-free fits of learning, forgetting, and spacing effects in human data. We then explore the analogue of human spacing effects in a deep net trained in a structured environment where tasks recur at different rates and compare the model's behavioral properties to those of people.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"29 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inclusion Ethics in AI: Use Cases in African Fashion 人工智能中的包容伦理:非洲时尚界的使用案例
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31266
Christelle Scharff, James Brusseau, K. Bathula, Kaleemunnisa Fnu, Samyak Rakesh Meshram, Om Gaikhe
{"title":"Inclusion Ethics in AI: Use Cases in African Fashion","authors":"Christelle Scharff, James Brusseau, K. Bathula, Kaleemunnisa Fnu, Samyak Rakesh Meshram, Om Gaikhe","doi":"10.1609/aaaiss.v3i1.31266","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31266","url":null,"abstract":"This paper addresses the ethics of inclusion in artificial in-telligence in the context of African fashion. Despite the proliferation of fashion-related AI applications and da-tasets global diversity remains limited, and African fash-ion is significantly underrepresented. This paper docu-ments two use-cases that enhance AI's inclusivity by in-corporating sub-Saharan fashion elements. The first case details the creation of a Senegalese fashion dataset and a model for classifying traditional apparel using transfer learning. The second case investigates African wax textile patterns generated through generative adversarial net-works (GANs), specifically StyleGAN architectures, and machine learning diffusion models. Alongside the practi-cal, technological advances, theoretical ethical progress is made in two directions. First, the cases are used to elabo-rate and define the ethics of inclusion, while also contrib-uting to current debates about how inclusion differs from ethical fairness. Second, the cases engage with the ethical debate on whether AI innovation should be slowed to prevent ethical imbalances or accelerated to solve them.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"18 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Can GenAI Foster Well-being in Self-regulated Learning? GenAI 如何促进自我调节学习中的幸福感?
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31234
Stefanie Hauske, Oliver Bendel
{"title":"How Can GenAI Foster Well-being in Self-regulated Learning?","authors":"Stefanie Hauske, Oliver Bendel","doi":"10.1609/aaaiss.v3i1.31234","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31234","url":null,"abstract":"This paper explores how generative AI (GenAI) can improve the well-being of learners within self-regulated learning (SRL) frameworks in the corporate context. In the “GenAI to Support SRL” section, it presents three custom versions of ChatGPT aimed at assisting learners. These so-called GPTs demonstrate the GenAI’s potential to actively support learners in SRL and positively influence their well-being. The “Discussion” and “Summary and Outlook” sections provide a balanced overview of the opportunities and risks associated with GenAI in the field of learning and highlight directions for future research. The results indicate that GenAI could improve the well-being of learners in SRL through providing personalized guidance, reducing feelings of stress, and increasing motivation and self-efficacy. At the same time, there are several challenges for companies and employees that need to be overcome.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"52 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Human-Like Representation Learning for Cognitive Architectures 面向认知架构的类人表征学习
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31274
Steven Jones, Peter Lindes
{"title":"Toward Human-Like Representation Learning for Cognitive Architectures","authors":"Steven Jones, Peter Lindes","doi":"10.1609/aaaiss.v3i1.31274","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31274","url":null,"abstract":"Human-like learning includes an ability to learn concepts from a stream of embodiment sensor data. Echoing previous thoughts such as those from Barsalou that cognition and perception share a common representation system, we suggest an addendum to the common model of cognition. This addendum poses a simultaneous semantic memory and perception learning that bypasses working memory, and that uses parallel processing to learn concepts apart from deliberate reasoning. The goal is to provide a general outline for how to extend a class of cognitive architectures to implement a more human-like interface between cognition and embodiment of an agent, where a critical aspect of that interface is that it is dynamic because of learning.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"21 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning 通过 "人在回路中 "的双向学习实现类似人类的平衡控制模式
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31278
Sheikh Mannan, V. Vimal, Paul DiZio, Nikhil Krishnaswamy
{"title":"Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning","authors":"Sheikh Mannan, V. Vimal, Paul DiZio, Nikhil Krishnaswamy","doi":"10.1609/aaaiss.v3i1.31278","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31278","url":null,"abstract":"In this paper, we explore how humans and AIs trained to perform a virtual inverted pendulum (VIP) balancing task converge and differ in their learning and performance strategies. We create a visual analogue of disoriented IP balancing, as may be experienced by pilots suffering from spatial disorientation, and train AI models on data from human subjects performing a real-world disoriented balancing task. We then place the trained AI models in a dyadic human-in-the-loop (HITL) training setting. Episodes in which human subjects disagreed with AI actions were logged and used to fine-tune the AI model. Human subjects then performed the task while being given guidance from pretrained and dyadically fine-tuned versions of an AI model. We examine the effects of HITL training on AI performance, AI guidance on human performance, and the behavior patterns of human subjects and AI models during task performance. We find that in many cases, HITL training improves AI performance, AI guidance improves human performance, and after dyadic training the two converge on similar behavior patterns.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"48 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Replacing Humans with Large Language Models in Voice-Based Human-in-the-Loop Systems 在基于语音的 "人在回路 "系统中用大型语言模型取代人类
Proceedings of the AAAI Symposium Series Pub Date : 2024-05-20 DOI: 10.1609/aaaiss.v3i1.31178
Shih-Hong Huang, Ting-Hao 'Kenneth' Huang
{"title":"On Replacing Humans with Large Language Models in Voice-Based Human-in-the-Loop Systems","authors":"Shih-Hong Huang, Ting-Hao 'Kenneth' Huang","doi":"10.1609/aaaiss.v3i1.31178","DOIUrl":"https://doi.org/10.1609/aaaiss.v3i1.31178","url":null,"abstract":"It is easy to assume that Large Language Models (LLMs) will seamlessly take over applications, especially those that are largely automated. In the case of conversational voice assistants, commercial systems have been widely deployed and used over the past decade. However, are we indeed on the cusp of the future we envisioned? There exists a social-technical gap between what people want to accomplish and the actual capability of technology. In this paper, we present a case study comparing two voice assistants built on Amazon Alexa: one employing a human-in-the-loop workflow, the other utilizes LLM to engage in conversations with users. In our comparison, we discovered that the issues arising in current human-in-the-loop and LLM systems are not identical. However, the presence of a set of similar issues in both systems leads us to believe that focusing on the interaction between users and systems is crucial, perhaps even more so than focusing solely on the underlying technology itself. Merely enhancing the performance of the workers or the models may not adequately address these issues. This observation prompts our research question: What are the overlooked contributing factors in the effort to improve the capabilities of voice assistants, which might not have been emphasized in prior research?","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"45 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信