Journal of Machine and Computing最新文献

筛选
英文 中文
Development of Image Processing and AI Model for Drone Based Environmental Monitoring System 为无人机环境监测系统开发图像处理和人工智能模型
Journal of Machine and Computing Pub Date : 2024-01-05 DOI: 10.53759/7669/jmc202404021
Cuddapah Anitha, Shivali Devi, V. K. Nassa, M. R., Kingshuk Das Baksi, Suganthi D
{"title":"Development of Image Processing and AI Model for Drone Based Environmental Monitoring System","authors":"Cuddapah Anitha, Shivali Devi, V. K. Nassa, M. R., Kingshuk Das Baksi, Suganthi D","doi":"10.53759/7669/jmc202404021","DOIUrl":"https://doi.org/10.53759/7669/jmc202404021","url":null,"abstract":"Data from environmental monitoring can be used to identify possible risks or adjustments to ecological patterns. Early detection reduces risks and lessens the effects on the environment and public health by allowing for prompt responses to ecological imbalances, pollution incidents, and natural disasters. Decision-making and analysis can be done in real time when Artificial Intelligence (AI) is integrated with Unmanned Aerial Vehicles (UAV) technology. With the help of these technologies, environmental monitoring is made possible with a more complete and effective set of tools for assessment, analysis, and reaction to changing environmental conditions. Multiple studies have shown that forest fires in India have been happening more often recently. Lightning, extremely hot weather, and dry conditions are the three main elements that might spontaneously ignite a forest fire. Both natural and man-made ecosystems are affected by forest fires. Forest fire photos are pre-processed using the Sobel and Canny filter. A Convolutional Neural Network (CNN)–based Forest Fire Image Classification Network (DFNet) using the publicly accessible Kaggle dataset is proposed in this study. The suggested DFNet classifier's hyperparameters are fine-tuned with the help of Spotted Hyena Optimizer (SHO). With a performance level of 99.4 percent, the suggested DFNet model outperformed the state-of-the-art models, providing substantial backing for environmental monitoring.","PeriodicalId":516151,"journal":{"name":"Journal of Machine and Computing","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139396072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信