Notre Dame Journal of Formal Logic最新文献

筛选
英文 中文
Modal Logics That Are Both Monotone and Antitone: Makinson’s Extension Results and Affinities between Logics 单调与反调的模态逻辑:Makinson的可拓结果与逻辑间的关联
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-11-01 DOI: 10.1215/00294527-2022-0029
L. Humberstone, Steven T. Kuhn
{"title":"Modal Logics That Are Both Monotone and Antitone: Makinson’s Extension Results and Affinities between Logics","authors":"L. Humberstone, Steven T. Kuhn","doi":"10.1215/00294527-2022-0029","DOIUrl":"https://doi.org/10.1215/00294527-2022-0029","url":null,"abstract":"A notable early result of David Makinson establishes that every monotone modal logic can be extended to L I , L V or L F , and every antitone logic, to L N , L V or L F , where L I , L N , L V and L F are logics axiomatized, respectively, by the schemas (cid:50) α ↔ α , (cid:50) α ↔ ¬ α , (cid:50) α ↔ ⊤ and (cid:50) α ↔ ⊥ . We investigate logics that are both monotone and antitone (hereafter amphitone). There are exactly three: L V , L F and the minimum amphitone logic AM axiomatized by the schema (cid:50) α → (cid:50) β . These logics, along with L I , L N and a wider class of “extensional” logics, bear close affinities to classical propositional logic. Characterizing those affinities reveals differences among several accounts of equivalence between logics. Some results about amphitone logics do not carry over when logics are construed as consequence or generalized (“multiple-conclusion”) consequence relations on languages that may lack some or all of the non-modal connectives. We close by discussing these divergences and conditions under which our results do carry over.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46460894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Did Aristotle Endorse Aristotle’s Thesis? A Case Study in Aristotle’s Metalogic 亚里士多德赞同亚里士多德的论点吗?亚里士多德形而上学个案研究
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-11-01 DOI: 10.1215/00294527-2022-0032
Yale Weiss
{"title":"Did Aristotle Endorse Aristotle’s Thesis? A Case Study in Aristotle’s Metalogic","authors":"Yale Weiss","doi":"10.1215/00294527-2022-0032","DOIUrl":"https://doi.org/10.1215/00294527-2022-0032","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43198115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On Stable Quotients 关于稳定商
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-08-01 DOI: 10.1215/00294527-2022-0023
K. Krupiński, A. Portillo
{"title":"On Stable Quotients","authors":"K. Krupiński, A. Portillo","doi":"10.1215/00294527-2022-0023","DOIUrl":"https://doi.org/10.1215/00294527-2022-0023","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44488681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly-Connexivity: Connexive Conjunction and Disjunction 多连接性:连接与不连接
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-08-01 DOI: 10.1215/00294527-2022-0024
N. Francez
{"title":"Poly-Connexivity: Connexive Conjunction and Disjunction","authors":"N. Francez","doi":"10.1215/00294527-2022-0024","DOIUrl":"https://doi.org/10.1215/00294527-2022-0024","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45656781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Measuring Inconsistency in Some Logics with Tense Operators 用紧算子度量某些逻辑中的不一致性
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-08-01 DOI: 10.1215/00294527-2022-0020
John Grant
{"title":"Measuring Inconsistency in Some Logics with Tense Operators","authors":"John Grant","doi":"10.1215/00294527-2022-0020","DOIUrl":"https://doi.org/10.1215/00294527-2022-0020","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48716008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Counterfactuals and Dependencies over (Generalized) Causal Teams 描述(广义)因果团队上的反事实和依赖关系
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-08-01 DOI: 10.1215/00294527-2022-0017
Fausto Barbero, Fan Yang
{"title":"Characterizing Counterfactuals and Dependencies over (Generalized) Causal Teams","authors":"Fausto Barbero, Fan Yang","doi":"10.1215/00294527-2022-0017","DOIUrl":"https://doi.org/10.1215/00294527-2022-0017","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42801668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Monotone Subintuitionistic Logic: Duality and Transfer Results 单调次直觉逻辑:对偶性与迁移结果
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-05-01 DOI: 10.1215/00294527-2022-0014
Jim de Groot, D. Pattinson
{"title":"Monotone Subintuitionistic Logic: Duality and Transfer Results","authors":"Jim de Groot, D. Pattinson","doi":"10.1215/00294527-2022-0014","DOIUrl":"https://doi.org/10.1215/00294527-2022-0014","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42341675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shrieking, Shrugging, and the Australian Plan 尖叫、耸肩和澳大利亚计划
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-05-01 DOI: 10.1215/00294527-2022-0009
Hitoshi Omori, Michael De
{"title":"Shrieking, Shrugging, and the Australian Plan","authors":"Hitoshi Omori, Michael De","doi":"10.1215/00294527-2022-0009","DOIUrl":"https://doi.org/10.1215/00294527-2022-0009","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46455639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Thin Set Versions of Hindman’s Theorem Hindman定理的薄集形式
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-03-16 DOI: 10.1215/00294527-2022-0027
D. Hirschfeldt, Sarah C. Reitzes
{"title":"Thin Set Versions of Hindman’s Theorem","authors":"D. Hirschfeldt, Sarah C. Reitzes","doi":"10.1215/00294527-2022-0027","DOIUrl":"https://doi.org/10.1215/00294527-2022-0027","url":null,"abstract":"This paper is part of a line of research on the computability-theoretic and reverse-mathematical strength of versions of Hindman’s Theorem [6] that began with the work of Blass, Hirst, and Simpson [1], and has seen considerable interest recently. We assume basic familiarity with computability theory and reverse mathematics, at the level of the background material in [8], for instance. On the reverse mathematics side, the two major systems with which we will be concerned are RCA0, the usual weak base system for reverse mathematics, which corresponds roughly to computable mathematics; and ACA0, which corresponds roughly to arithmetic mathematics. For principles P of the form (∀X) [Φ(X) → (∃Y ) Ψ(X, Y )], we call any X such that Φ(X) holds an instance of P , and any Y such that Ψ(X, Y ) holds a solution to X . We begin by introducing some related combinatorial principles. For a set S, let [S] be the set of n-element subsets of S. Ramsey’s Theorem (RT) is the statement that for every n and every coloring of [N] with finitely many colors, there is an infinite set H that is homogeneous for c, which means that all elements of [H ] have the same color. There has been a great deal of work on computability-theoretic and reverse-mathematical aspects of versions of Ramsey’s Theorem, such as RTnk , which is RT restricted to colorings of [N] n with k many colors. (See e.g. [8].)","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46765150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Games on Base Matrices 基矩阵上的对策
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2022-03-04 DOI: 10.1215/00294527-10701451
V. Fischer, Marlene Koelbing, Wolfgang Wohofsky
{"title":"Games on Base Matrices","authors":"V. Fischer, Marlene Koelbing, Wolfgang Wohofsky","doi":"10.1215/00294527-10701451","DOIUrl":"https://doi.org/10.1215/00294527-10701451","url":null,"abstract":"Using a game characterization of distributivity, we show that base matrices for $mathcal{P}(omega)/text{fin}$ of regular height larger than $mathfrak{h}$ necessarily have maximal branches which are not cofinal.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48033427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信