Complex Variables and Elliptic Equations最新文献

筛选
英文 中文
Liouville theorem for Hénon-type bi-harmonic Choquard equation in 中赫农型双谐波 Choquard 方程的柳维尔定理
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-09-12 DOI: 10.1080/17476933.2024.2375562
Haiyang He, Xiao Li
{"title":"Liouville theorem for Hénon-type bi-harmonic Choquard equation in","authors":"Haiyang He, Xiao Li","doi":"10.1080/17476933.2024.2375562","DOIUrl":"https://doi.org/10.1080/17476933.2024.2375562","url":null,"abstract":"In this paper, our purpose is to study the following Hénon-type Bi-harmonic Choquard equation (1) Δ2u=∫RN|x|α|y|αup(y)|x−y|N−μdyup−1,inRN, where α>0,0<μ<N. Let N = 5 and 2<p<5+2α+μ, we will show...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"21 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and multiplicity of sign-changing solutions for quasilinear Schrödinger–Poisson system 准线性薛定谔-泊松系统符号变化解的存在性和多重性
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-09-05 DOI: 10.1080/17476933.2024.2372100
Xin Du, Chun-Lei Tang
{"title":"Existence and multiplicity of sign-changing solutions for quasilinear Schrödinger–Poisson system","authors":"Xin Du, Chun-Lei Tang","doi":"10.1080/17476933.2024.2372100","DOIUrl":"https://doi.org/10.1080/17476933.2024.2372100","url":null,"abstract":"In this paper, we consider the quasilinear Schrödinger–Poisson system {−Δu+V(x)u+ϕu−[Δ(1+u2)1/2]u2(1+u2)1/2=f(u)inR3,−Δϕ=u2inR3, where V is a given coercive potential and the nonlinearity include...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"11 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liouville theorem of the regional fractional Lane–Emden equations 区域分数 Lane-Emden 方程的柳维尔定理
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-09-02 DOI: 10.1080/17476933.2024.2394878
Ying Wang, Yanqing Sun, Hongxing Chen, Hichem Hajaiej
{"title":"Liouville theorem of the regional fractional Lane–Emden equations","authors":"Ying Wang, Yanqing Sun, Hongxing Chen, Hichem Hajaiej","doi":"10.1080/17476933.2024.2394878","DOIUrl":"https://doi.org/10.1080/17476933.2024.2394878","url":null,"abstract":"The purpose of this paper is to study the Liouville property for the Lane–Emden equation involving the regional fractional Laplacian (−Δ)Ωsu+Vu=h1up+h2in Ω,u=0on ∂Ω, where s∈(0,1), p>0, h1,h2 are...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"7 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nonlocal elliptic system with nonlinear singular terms 带有非线性奇异项的非局部椭圆系统
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-08-15 DOI: 10.1080/17476933.2024.2382791
Kheireddine Biroud
{"title":"A nonlocal elliptic system with nonlinear singular terms","authors":"Kheireddine Biroud","doi":"10.1080/17476933.2024.2382791","DOIUrl":"https://doi.org/10.1080/17476933.2024.2382791","url":null,"abstract":"In this work we deal with the nonlocal elliptic system: (S){(−Δ)s1u=θvqu1−θin Ω,(−Δ)s2v=qvq−1uθin Ω,u=v=0in RN∖Ω,u,v>0in Ω, where Ω⊂RN is a bounded regular domain (C2 is sufficient), N>2s2, s1,s2...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"11 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liouville-type results for semilinear inequalities involving the Dunkl Laplacian operator 涉及邓克尔拉普拉斯算子的半线性不等式的柳维尔式结果
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-08-13 DOI: 10.1080/17476933.2024.2384485
Mohamed Jleli, Bessem Samet, Calogero Vetro
{"title":"Liouville-type results for semilinear inequalities involving the Dunkl Laplacian operator","authors":"Mohamed Jleli, Bessem Samet, Calogero Vetro","doi":"10.1080/17476933.2024.2384485","DOIUrl":"https://doi.org/10.1080/17476933.2024.2384485","url":null,"abstract":"Let Δk be the Dunkl generalized Laplacian operator associated to a root system R of RN and a nonnegative multiplicity function k defined on R and invariant by the finite reflection group W. In this...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"19 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact solutions for some classes of non-elliptic Cauchy–Riemann type systems with singular coefficients 具有奇异系数的几类非椭圆考奇-黎曼型系统的精确解
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-08-06 DOI: 10.1080/17476933.2024.2364645
A. Bentrad
{"title":"Exact solutions for some classes of non-elliptic Cauchy–Riemann type systems with singular coefficients","authors":"A. Bentrad","doi":"10.1080/17476933.2024.2364645","DOIUrl":"https://doi.org/10.1080/17476933.2024.2364645","url":null,"abstract":"This paper deals with the solutions for some classes of non-elliptic Cauchy–Riemann type systems with singular coefficients.We give an explicit representation of the solutions and study their singu...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weinstein-type Segal–Bargmann transform and its applications to partial differential equations 韦恩斯坦型西格尔-巴格曼变换及其在偏微分方程中的应用
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-05-30 DOI: 10.1080/17476933.2024.2356687
Fethi Soltani, Hanen Saadi
{"title":"Weinstein-type Segal–Bargmann transform and its applications to partial differential equations","authors":"Fethi Soltani, Hanen Saadi","doi":"10.1080/17476933.2024.2356687","DOIUrl":"https://doi.org/10.1080/17476933.2024.2356687","url":null,"abstract":"In this paper, we give some applications of the Weinstein-type Segal–Bargmann transform Bα in the field of partial differential equations, such as the time-dependent Schrödinger equation and heat C...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"42 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some refinements of the Fekete–Szegö inequalities for a class of biholomorphic mappings 一类双holomorphic映射的 Fekete-Szegö 不等式的一些改进
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-05-26 DOI: 10.1080/17476933.2024.2355153
Weikang Fang, Qinghua Xu
{"title":"Some refinements of the Fekete–Szegö inequalities for a class of biholomorphic mappings","authors":"Weikang Fang, Qinghua Xu","doi":"10.1080/17476933.2024.2355153","DOIUrl":"https://doi.org/10.1080/17476933.2024.2355153","url":null,"abstract":"Let B be the unit disk U in C or the unit ball of a general complex Banach space. In this paper, we obtain a refinement of the Fekete–Szegö inequality for the class of Sk+10(B) of mappings f for wh...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"39 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillation criteria of Kamenev-type for non-linear partial differential equations 非线性偏微分方程的卡梅涅夫型振荡准则
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-04-30 DOI: 10.1080/17476933.2024.2343393
Mustafa Fahri Aktas, Elif Ece Demir
{"title":"Oscillation criteria of Kamenev-type for non-linear partial differential equations","authors":"Mustafa Fahri Aktas, Elif Ece Demir","doi":"10.1080/17476933.2024.2343393","DOIUrl":"https://doi.org/10.1080/17476933.2024.2343393","url":null,"abstract":"Using the technique of weighted integral averages, known in the oscillation theory of ordinary differential equations, we obtain new oscillation criteria for the non-linear partial differential equ...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"239 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularity results for an anisotropic nonlinear Dirichlet problem 各向异性非线性 Dirichlet 问题的正则性结果
IF 0.9 4区 数学
Complex Variables and Elliptic Equations Pub Date : 2024-04-30 DOI: 10.1080/17476933.2024.2336975
Fessel Achhoud, G. Rita Cirmi
{"title":"Regularity results for an anisotropic nonlinear Dirichlet problem","authors":"Fessel Achhoud, G. Rita Cirmi","doi":"10.1080/17476933.2024.2336975","DOIUrl":"https://doi.org/10.1080/17476933.2024.2336975","url":null,"abstract":"In this paper we consider the homogeneous Dirichlet problem associated to the model equation −div⁡(a(x)|∇u|p−2∇u)−div⁡(|u|(r−1)q+1|∇u|q−2∇u)=finΩ, where Ω is a bounded open subset of RN,N>2, 1<q<...","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信