{"title":"Numerical simulation on aerodynamic characteristics of moving van under the train-induced wind","authors":"Jiajun He, Huo-yue Xiang, Wenyuan Ren, Yongle Li","doi":"10.12989/WAS.2021.33.1.041","DOIUrl":"https://doi.org/10.12989/WAS.2021.33.1.041","url":null,"abstract":"Constructing combined highway–railway bridge brings concerns regarding the aerodynamic interference between train and road vehicle. Research on the interaction mechanism can help calculate the vehicle response for the assessment of travelling safety. In this work, computational fluid dynamics (CFD) verified by a moving model test was applied on researching the aerodynamic characteristics of a moving van under the influence of train-induced wind. Two processes - encounter process (train and van drive towards each other) and chase process (train surpasses the van), are compared. The aerodynamic forces and pressure distribution of the van as well as the flow fields around the vehicles during the interaction are analyzed coherently. The results reveal that the adjacent positive and negative pressure zones around the nose and tail of the train bring moving and centralized high-pressure zone on the van's flank and generate significant aerodynamic variations, each variation contains at least two peak/valley values, and the middle carriage provide a stable transition between. Different superposition effect of the pressure zones results in difference between the encounter process and chase process, the variation trend of drag force and lift in the two processes are similar while the encounter has larger variation amplitude, in terms of pitching moment and yawing moment, more inversions of force happen in the encounter process but the variation amplitude is smaller. When the van runs near the nose of the train in the encounter, it gets the largest variation of drag force, lift force and rolling moment, while the largest variation of yawing moment and pitching moment happens when it runs near the nose of the train in the chase process.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"33 1","pages":"41"},"PeriodicalIF":1.6,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43462030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overturning assessment of railway vehicles under cross winds","authors":"Z. Yao, Nan Zhang","doi":"10.12989/WAS.2021.33.1.001","DOIUrl":"https://doi.org/10.12989/WAS.2021.33.1.001","url":null,"abstract":"The overturning issues in a strong wind are extremely critical to the railway vehicles, which have attracted a great deal of attention over the years. To address such problems, this paper introduces a dynamic reliability approach to evaluate the overturning risk of vehicles in crosswinds. Starting from the aerodynamic model, a novel prediction formula of unsteady crosswind forces with a consideration of the complete turbulent field effect is derived. Using the pseudo-excitation method (PEM), the power spectrum of vehicle responses is then calculated by the established vehicle model, and finally the corresponding results are used to assess the probabilistic overturning of vehicles in terms of the dynamic reliability analysis. It is found from the calculations that the time-dependent failure probability curves are related to the vehicle speed, wind speed, and crosswind direction, and the probabilistic characteristic wind curves (PCWCs) at different failure probabilities are more useful and reasonable for evaluating the overturning risk in comparison with the traditional characteristic wind curves (CWCs) in previous investigations. Furthermore, the probabilistic characteristic wind surface (PCWS) that considers the effect of crosswind direction, is developed, and it reveals that the vehicle is most vulnerable at a condition of perpendicular crosswind direction.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"33 1","pages":"1-11"},"PeriodicalIF":1.6,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46578226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"POD-based analysis of time-resolved tornado-like vortices","authors":"Mengen Wang, S. Cao, Jinxin Cao","doi":"10.12989/WAS.2021.33.1.013","DOIUrl":"https://doi.org/10.12989/WAS.2021.33.1.013","url":null,"abstract":"In this study, three representative configurations of tornado-like vortices, i.e., single vortex, vortex breakdown and multi-vortex, are numerically simulated using large-eddy simulation (LES). Proper orthogonal decomposition (POD) is firstly employed to decompose flow-field snapshots into a series of orthogonal flow patterns (POD modes) and time-dependent coefficients. Then, a conditional-average analysis is conducted to obtain the four kinds of conditionally-averaged flow fields, which are then compared with instantaneous and ensemble-averaged flow fields. Next, a quadruple POD analysis is performed to decompose the instantaneous flow field into mean, coherent, transition and noise components. Finally, a qualitative analysis is implemented for unsteady vortex motions in horizontal and vertical planes. Results show that the conditional average shows larger-scale coherent structures than the classical ensemble average, while it loses the small-scale turbulent fluctuations present in instantaneous flow. The tornado vortex structure is controlled by the mean component in the single-vortex stage. With increase in swirl ratio, the tornado vortex evolves from single-vortex, to vortex-breakdown to multi-vortex, companied by kinetic energy transference to coherent and transition components. The horizontal and vertical vortex motions are essentially the results of horizontal and vertical velocity perturbations.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"33 1","pages":"13"},"PeriodicalIF":1.6,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48195168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the damping mechanisms of a suspended particle damperattached to a wind turbine tower","authors":"Chenzhi Ma, Zheng Lu, Dianchao Wang, Zixin Wang","doi":"10.12989/WAS.2021.33.1.103","DOIUrl":"https://doi.org/10.12989/WAS.2021.33.1.103","url":null,"abstract":"Intensive attention has been given to mitigating the dynamic responses of wind turbine towers (WTs) under wind and seismic excitations to ensure their safety and serviceability. This study details the damping mechanisms of a suspended particle damper (suspended PD) on the vibration control of a horizontal-axis WT. This damper combines the benefits of a tuned mass damper (TMD) and fixed PD, and can be effective without an external damping system. It therefore is a more practical solution for the vibration control of a WT. In this study, a finite element WT is built, and two damper systems with a TMD and suspended PD are modeled and compared. Ground motions and strong lateral winds are applied as external excitations to the operational and parked turbines, respectively. A full factorial study using a statistical method is conducted to determine the interaction effects of key parameters of the suspended PD. Results show that the damping effectiveness of a suspended PD is not sensitive to the external damping system under specific parameters, and it can be effective in detuned cases. Finally, a comparison between the optimal TMD and suspended PD on the vibration control of a WT is performed. The comparative results indicate that the performance of the suspended PD is considerably more robust than the TMD in wind-seismic excitations.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"33 1","pages":"103"},"PeriodicalIF":1.6,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46983019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aerodynamic modeling for streamlined box girders using nonlinear differential equations and validation in actively generated turbulence","authors":"Lin Zhao, Shengyuan Liu, Junfeng Yan, Y. Ge","doi":"10.12989/WAS.2021.33.1.071","DOIUrl":"https://doi.org/10.12989/WAS.2021.33.1.071","url":null,"abstract":"In classical buffeting analysis theory, aerodynamic forces are usually expressed by a linear quasi-steady formula, and they are improved by aerodynamic admittances suitable for streamlined bridge girders. Recent studies have shown that admittances change obviously with incoming flow characteristics and aerodynamic nonlinearity, such as the frequency multiplication phenomenon, and motion-induced amplitude-related aerodynamic effects cannot be ignored in some cases. To address these problems, a nonlinear condensed subsystem equation (NCSE) suitable for wind-induced aerodynamic force modeling is established in the time domain. It characterizes aerodynamic nonlinearity with series of nonlinear differential equations and data-driven parameters. The proposed framework can be used for complex aerodynamic re-illustration related to the strong nonlinearity of streamlined box girders. To validate the precision and feasibility of the framework, sectional model experiments performed on a streamlined box girder were carried out in an active turbulence generated wind tunnel in which an adjustable array of multiple fans was assisted by actively controlled vibrating wings for a 2D turbulence condition. The case study shows that the NCSE model can be used to predict nonlinear aerodynamic forces in the time and frequency domains, even under complex stochastic flow conditions. The proposed method provides an alternative way to predict possible aerodynamics based on the condition of incoming flow with sufficient accuracy, and it can illustrate multifrequency components of aerodynamic forces.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"33 1","pages":"71"},"PeriodicalIF":1.6,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48976745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2D and 3D numerical and experimental analyses ofthe aerodynamic effects of air fences on a high-speed train","authors":"M. Mohebbi, M. Rezvani","doi":"10.12989/WAS.2021.32.6.539","DOIUrl":"https://doi.org/10.12989/WAS.2021.32.6.539","url":null,"abstract":"This perusal surveys the design criteria indispensable for fences that are installed alongside the high-speed railway \u0000tracks to protect the passing high-speed rolling stock under strong side winds. Using a numerical code based on Lattice Boltzmann Method (LBM) it is attempted to initially investigate the airflow behavior behind the fences. A variety of geometries for air fences in a two-dimensional space are compared. A wind tunnel test is performed to verify the numerical results. The three-dimensional flow patterns around the German Intercity Express (ICE3) high-speed train with and without the air fences are \u0000numerically examined to be more realistic. It is found that the presence of the fences has a significant impact on decreasing the intensity of the airflow above the train. The edges on the top of the fences cause more reduction in the velocity of air flowing above the train.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"32 1","pages":"539"},"PeriodicalIF":1.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49131450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Zhou, Tang-hong Liu, Zhengwei Chen, Wen-hui Li, Zi-jian Guo, Xuhui He, Youwu Wang
{"title":"Comparison study of the effect of bridge-tunnel transition on train aerodynamic performance with or without crosswind","authors":"Lei Zhou, Tang-hong Liu, Zhengwei Chen, Wen-hui Li, Zi-jian Guo, Xuhui He, Youwu Wang","doi":"10.12989/WAS.2021.32.6.597","DOIUrl":"https://doi.org/10.12989/WAS.2021.32.6.597","url":null,"abstract":"This paper studied the case of high-speed train running from flat ground to bridges and into/out of tunnels, with or \u0000without crosswind based on the Computational Fluid Dynamics (CFD) method. First, the flow structure was analyzed to explain \u0000the influence mechanisms of different infrastructures on the aerodynamic characteristics of the train. Then, the evolution of \u0000aerodynamic forces of the train during the entire process was analyzed and compared. Additionally, the pressure variation on the \u0000train body and the tunnel wall was examined in detail. The results showed that the pressure coefficient and the flow structure on \u0000both sides of the high-speed train were symmetrical for no crosswind case. By contrast, under crosswind, there was a \u0000tremendous and immediate change in the pressure mapping and flow structure when the train passing through the bridge-tunnel section. The influence of the ground-bridge transition on the aerodynamic forces was much smaller than that of the bridge-tunnel section. Moreover, the variation of aerodynamic load during the process of entering and exiting the bridge-tunnel sections was both significant. In addition, in the case without crosswind, the change in the pressure change in the tunnel conformed to the law of pressure wave propagation, while under crosswind, the variation in pressure was comprehensively affected by both the train and crosswind in the tunnel.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"32 1","pages":"597"},"PeriodicalIF":1.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48325210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study on passive flow control of circular cylinder via perforated splitter plate","authors":"Serdar Şahin, T. Durhasan, Engin Pinar, H. Akilli","doi":"10.12989/WAS.2021.32.6.613","DOIUrl":"https://doi.org/10.12989/WAS.2021.32.6.613","url":null,"abstract":"Present experimental investigation aims to reduce the shedding of vortex in the near wake region of a circular \u0000cylinder using a perforated splitter plate. Perforated plates were placed in the wake region of the cylinder and aligned with the streamwise direction. The length of the plates was equal to the diameter of the cylinder. Different plate porosities and locations were examined and obtained results were compared to the baseline cylinder. Flow measurements downstream of the cylinder were performed in a water channel by employing a particle image velocimetry technique (PIV) at a Reynolds number of Re=5x103. It is observed that the effect of the porosity on the flow characteristics of the cylinder depends on the location of the plate. The strength of shear layers and flow fluctuations in the near wake region of the cylinder are considerably diminished by the perforated splitter plate. It is found that the porosity of e=0.3 is the most effective control element for gap ratio of G/D=0.5. \u0000On the other hand, proper gap ratio is determined as G/D=2 for porosity of e=0.7. It is concluded in the present study that the perforated splitter plate could be used as alternative passive flow control technique in order to reduce vortex shedding of the cylinder.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"32 1","pages":"613"},"PeriodicalIF":1.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43102498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengli Li, Jun Liang, P. Guo, Xidong Wang, Panjie Li
{"title":"A novel test method for the aerodynamic performance ofwind turbine airfoil using wind generated by a moving vehicle","authors":"Shengli Li, Jun Liang, P. Guo, Xidong Wang, Panjie Li","doi":"10.12989/WAS.2021.32.6.551","DOIUrl":"https://doi.org/10.12989/WAS.2021.32.6.551","url":null,"abstract":"Refer to wind turbine airfoil wind tunnel test and consider the characteristics of wind generated by a moving \u0000vehicle, a new test method for wind turbine airfoil aerodynamic performance is proposed in this paper. Because of the relativity \u0000of motion, the vehicle will generate a relative wind field in the process of motion. Thus, the aerodynamic performance of wind \u0000turbine airfoil can be investigated using a transiting test method. In this study, a transiting test method is systematically introduced, the processing method of test data is discussed in detail, and the influence of vehicle vibration and end plate on the test results is evaluated. Three independent repeated tests are conducted, and the influence of natural wind is analyzed to eliminate the instability effect. The feasibility of the proposed test method is then verified by comparing its results with the results of wind tunnel test.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"32 1","pages":"551"},"PeriodicalIF":1.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42101416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}