{"title":"SUSHI for a Bingham Flow Type Problem","authors":"Wassim Aboussi, F. Benkhaldoun, A. Bradji","doi":"10.1007/978-3-031-32412-3_1","DOIUrl":"https://doi.org/10.1007/978-3-031-32412-3_1","url":null,"abstract":"","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":"129 1","pages":"1-13"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85359574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demanded Scale for Modern Numerical Optimisation","authors":"K. Penev","doi":"10.1007/978-3-031-32412-3_24","DOIUrl":"https://doi.org/10.1007/978-3-031-32412-3_24","url":null,"abstract":"","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":"1 1","pages":"271-278"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90176671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Class of Energy-Preserving Runge-Kutta Methods for the Korteweg-de Vries Equation","authors":"Yue Chen, Yuezheng Gong, Qi Hong, Chuwu Wang","doi":"10.4208/nmtma.oa-2021-0172","DOIUrl":"https://doi.org/10.4208/nmtma.oa-2021-0172","url":null,"abstract":"In this paper, we present a quadratic auxiliary variable approach to develop a new class of energy-preserving Runge-Kutta methods for the Korteweg-de Vries equation. The quadratic auxiliary variable approach is first proposed to reformulate the original model into an equivalent system, which transforms the energy conservation law of the Korteweg-de Vries equation into two quadratic invariants of the reformulated system. Then the symplectic Runge-Kutta methods are directly employed for the reformulated model to arrive at a new kind of time semi-discrete schemes for the original problem. Under the consistent initial condition, the proposed methods are rigorously proved to maintain the original energy conservation law of the Korteweg-de Vries equation. In addition, the Fourier pseudo-spectral method is used for spatial discretization, resulting in fully discrete energy-preserving schemes. To implement the proposed methods effectively, we present a very efficient iterative technique, which not only greatly saves the calculation cost, but also achieves the purpose of practically preserving structure. Ample numerical results are addressed to confirm the expected order of accuracy, conservative property and efficiency of the proposed algorithms.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47040967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Implicit Solver for the Time-Dependent Kohn-Sham Equation","authors":"Lei Yang","doi":"10.4208/nmtma.oa-2020-0040","DOIUrl":"https://doi.org/10.4208/nmtma.oa-2020-0040","url":null,"abstract":". The implicit numerical methods have the advantages on preserving the physical properties of the quantum system when solving the time-dependent Kohn-Sham equation. However, the efficiency issue prevents the practical applications of those implicit methods. In this paper, an implicit solver based on a class of Runge-Kutta methods and the finite element method is proposed for the time-dependent Kohn-Sham equation. The efficiency issue is partially resolved by three approaches, i.e., an h -adaptive mesh method is proposed to effectively restrain the size of the discretized problem, a complex-valued algebraic multigrid solver is developed for efficiently solving the derived linear system from the implicit discretization, as well as the OpenMP based parallelization of the algorithm. The numerical convergence, the ability on preserving the physical properties, and the efficiency of the proposed numerical method are demonstrated by a number of numerical experiments.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43333198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strong Convergence of a Fully Discrete Scheme for Multiplicative Noise Driving SPDEs with Non-Globally Lipschitz Continuous Coefficients","authors":"Xu Zhao","doi":"10.4208/nmtma.oa-2020-0143","DOIUrl":"https://doi.org/10.4208/nmtma.oa-2020-0143","url":null,"abstract":"","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47319222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence of the Peaceman-Rachford Splitting Method for a Class of Nonconvex Programs","authors":"M. Chao","doi":"10.4208/NMTMA.OA-2020-0063","DOIUrl":"https://doi.org/10.4208/NMTMA.OA-2020-0063","url":null,"abstract":"In this paper, we analyze the convergence of the Peaceman-Rachford splitting method (PRSM) for a type of nonconvex and nonsmooth optimization with linear constraints, whose objective function is the sum of a proper lower semicontinuous function and a strongly convex differential function. When a suitable penalty parameter is chosen and the iterative point sequence is bounded, we show the global convergence of the PRSM. Furthermore, under the assumption that the associated function satisfies the Kurdyka-Łojasiewicz property, we prove the strong convergence of the PRSM. We also provide sufficient conditions guaranteeing the boundedness of the generated sequence. Finally, we present some preliminary numerical results to show the effectiveness of the PRSM and also give a comparison with the DouglasRachford splitting method. AMS subject classifications: 90C26, 90C30","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47819212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Acceleration Technique for the Augmented IIM for 3D Elliptic Interface Problems","authors":"Changjuan Zhang","doi":"10.4208/NMTMA.OA-2020-0112","DOIUrl":"https://doi.org/10.4208/NMTMA.OA-2020-0112","url":null,"abstract":"A new fast algorithm based on the augmented immersed interface method and a fast Poisson solver is proposed to solve three dimensional elliptic interface problems with a piecewise constant but discontinuous coefficient. In the new approach, an augmented variable along the interface, often the jump in the normal derivative along the interface is introduced so that a fast Poisson solver can be utilized. Thus, the solution of the Poisson equation depends on the augmented variable which should be chosen such that the original flux jump condition is satisfied. The discretization of the flux jump condition is done by a weighted least squares interpolation using the solution at the grid points, the jump conditions, and the governing PDEs in a neighborhood of control points on the interface. The interpolation scheme is the key to the success of the augmented IIM particularly. In this paper, the key new idea is to select interpolation points along the normal direction in line with the flux jump condition. Numerical experiments show that the method maintains second order accuracy of the solution and can reduce the CPU time by 20-50%. The number of the GMRES iterations is independent of the mesh size. AMS subject classifications: 65N06, 65N50","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44819708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tensor Bi-CR Methods for Solutions of High Order Tensor Equation Accompanied by Einstein Product","authors":"M. Hajarian","doi":"10.4208/nmtma.oa-2021-0057","DOIUrl":"https://doi.org/10.4208/nmtma.oa-2021-0057","url":null,"abstract":"","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45034788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}