{"title":"On normal approximation for φ-mixing and m-dependent random variables","authors":"Jonas Kazys Sunklodas","doi":"10.1007/s10986-023-09612-0","DOIUrl":"https://doi.org/10.1007/s10986-023-09612-0","url":null,"abstract":"<p>In this paper, we estimate the difference |<b>E</b><i>h</i>(<i>Z</i><sub><i>n</i></sub>) <i>−</i> <b>E</b><i>h</i>(<i>Y</i>)<i>|</i> between the expectations of real finite Lipschitz function <i>h</i> of the sum <i>Z</i><sub><i>n</i></sub> = (<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<i>/B</i><sub><i>n</i></sub>, where <span>({B}_{n}^{2})</span> = <b>E</b>(<i>X</i><sub>1</sub> + ⋯ + <i>X</i><sub><i>n</i></sub>)<sup>2</sup> <i>></i> 0, and a standard normal random variable <i>Y</i>, where real centered random variables <i>X</i><sub>1</sub><i>,X</i><sub>2</sub><i>,</i>… satisfy the <i>φ</i>-mixing condition, defined between the “past” and “ future”, or are <i>m</i>-dependent. In particular cases, under the condition <span>({sum }_{r=1}^{infty }rvarphi (r)<infty )</span> or <span>({sum }_{r=1}^{infty }{rvarphi }^{1/2}(r)<infty )</span>, the obtained upper bounds for <i>φ</i>-mixing random variables are of order <i>O</i>(<i>n</i><sup><i>−</i>1<i>/</i>2</sup>). In addition, we refine the previously known upper bounds of order <i>O</i>((<i>m</i> + 1)<sup>1+<i>δ</i></sup><i>L</i><sub>2+<i>δ,n</i></sub>), where <i>L</i><sub>2+<i>δ,n</i></sub> is the Lyapunov fraction of order 2 + <i>δ</i>, for <i>m</i>-dependent random variables, supplementing them with explicit constants. We also separately present the case of independent r.v.s.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138492793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solvability of a nonlinear parabolic problem arising in modeling surface reactions","authors":"Algirdas Ambrazevičius, Vladas Skakauskas","doi":"10.1007/s10986-023-09609-9","DOIUrl":"https://doi.org/10.1007/s10986-023-09609-9","url":null,"abstract":"<p>We investigate the existence, uniqueness, and long-time behavior of classical solutions to a coupled system of seven nonlinear parabolic equations. Four of them are determined in the interior of a region, and the other three are solved on a part of the boundary. In particular, such systems arise in modeling of surface reactions that involve the bulk diffusion of reactants toward and reaction products from the biocatalyst surface and surface diffusion of the intermediate reaction products.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp bounds on the third Hankel determinant for the Ozaki close-to-convex and convex functions","authors":"Lei Shi, Muhammad Arif","doi":"10.1007/s10986-023-09610-2","DOIUrl":"https://doi.org/10.1007/s10986-023-09610-2","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135341060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On general sums involving the floor function with applications to k-free numbers","authors":"Wei Zhang","doi":"10.1007/s10986-023-09611-1","DOIUrl":"https://doi.org/10.1007/s10986-023-09611-1","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some definite integrals arising from selfdecomposable characteristic functions","authors":"Zbigniew J. Jurek","doi":"10.1007/s10986-023-09607-x","DOIUrl":"https://doi.org/10.1007/s10986-023-09607-x","url":null,"abstract":"Abstract In the probability theory, selfdecomposable or class L 0 distributions play an important role as they are limit distributions of normalized partial sums of sequences of independent, not necessarily identically distributed, random variables. The class L 0 is quite large and includes many known classical distributions. For this note, the most important feature of the selfdecomposable variables are their random integral representation with respect to a Lévy process. From those random integral representations we get the equality of logarithms of some characteristic functions. These allow us to get formulas for some definite integrals; some of them were previously unknown, and some are rarely quoted in popular tables of integrals and series.","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135805387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of functional relation formula for the Clausen and Glaisher functions and multiple L-values","authors":"Yayoi Nakamura, Yoshitaka Sasaki","doi":"10.1007/s10986-023-09608-w","DOIUrl":"https://doi.org/10.1007/s10986-023-09608-w","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135806166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite volume ADI scheme for hybrid dimension heat conduction problems set in a cross-shaped domain","authors":"Vytenis Šumskas, Raimondas Čiegis","doi":"10.1007/s10986-022-09561-0","DOIUrl":"https://doi.org/10.1007/s10986-022-09561-0","url":null,"abstract":"<p>In this paper, we construct an alternating direction implicit (ADI) type finite volume numerical scheme to solve a nonclassical nonstationary heat conduction problem set in a 2D cross-shaped domain. We reduce the original model to a hybrid dimension model in a large part of the domain. We define special conjugation conditions between 2D and 1D parts. We apply the finite volume method to approximate spatial differential operators and use ADI splitting for time integration. The ADI scheme is unconditionally stable, and under a mix of Dirichlet and Neumann boundary conditions, the approximation error is of second order in space and time. The results of computational experiments confirm the theoretical error analysis. We compare visual representations and computational times for various sizes of reduced dimension zones.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Some Approximations for Sums of Independent Random Variables","authors":"Jonas Kazys Sunklodas","doi":"10.1007/s10986-022-09560-1","DOIUrl":"https://doi.org/10.1007/s10986-022-09560-1","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Distribution of the Digits in Lüroth Expansions","authors":"Qing-Long Zhou","doi":"10.1007/s10986-022-09553-0","DOIUrl":"https://doi.org/10.1007/s10986-022-09553-0","url":null,"abstract":"<p>For <i>x ∈</i> [0<i>,</i> 1), let [<i>d</i><sub>1</sub>(<i>x</i>)<i>, d</i><sub>2</sub>(<i>x</i>)<i>, . . .</i>] be its Lüroth expansion, and let {<i>p</i><sub><i>n</i></sub>(<i>x</i>)<i>/qn</i>(<i>x</i>)}<sub><i>n</i>≥1</sub> be the sequence of convergents of <i>x</i>. In this paper, we prove that the Hausdorff dimension of the exceptional set</p><span>$$ {F}_{alpha}^{beta }=left{xin left[left.0,1right)right.:underset{nto infty }{lim}operatorname{inf}frac{log {d}_{n+1}(x)}{-log left|x-frac{p_n(x)}{q_n(x)}right|}=alpha, underset{nto infty }{lim}sup frac{log {d}_{n+1}(x)}{-log left|x-frac{p_n(x)}{q_n(x)}right|}ge beta right} $$</span><p>is (1 <i>− β</i>)<i>/</i>2 or 1 <i>− β</i> according to <i>α ></i> 0 or <i>α</i> = 0. This extends an earlier result of Tan and Zhang.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Euler sums of multiple hyperharmonic numbers","authors":"Ce Xu, Xixi Zhang, Ying Li","doi":"10.1007/s10986-022-09552-1","DOIUrl":"https://doi.org/10.1007/s10986-022-09552-1","url":null,"abstract":"<p>For <i>k</i> ≔ (<i>k</i><sub>1</sub>, …, <i>k</i><sub><i>r</i></sub>) ∈ ℕ<sup><i>r</i></sup> and <i>n</i>, <i>m</i> ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers <span>( {zeta}_n^{(m)}(k) )</span> and the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup>(<i>q</i>; <i>k</i>)(<i>m</i> + 2 − <i>k</i><sub>1</sub> ≤ <i>q</i> ∈ ℕ). When <b><i>k</i></b> = (<i>k</i>) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers <span>( {zeta}_n^{(m)}(k) )</span> can be expressed in terms combinations of products of polynomial in <i>n</i> of degree at most <i>m −</i> 1 and classical multiple harmonic sums with depth ≤ <i>r</i>, and prove that the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup> (<i>q</i>; <b><i>k</i></b>) can be evaluated by classical multiple zeta values with weight ≤ <i>q</i> + <i>|</i><b><i>k</i></b><i>|</i> and depth ≤ <i>r</i> + 1.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}