SPE Journal最新文献

筛选
英文 中文
Rock-Breaking Characteristics of Three-Ribbed Ridge Nonplanar Polycrystalline Diamond Compact Cutter and Its Application in Plastic Formations 三肋脊非平面聚晶金刚石复合切削刃的破岩特性及其在塑性地层中的应用
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221492-pa
Lian Chen, Xiaoqiang Peng, Yong Li, Xindong Wang, Song Wang, Hua Luo, Qingchun Gao, Xiyan Song
{"title":"Rock-Breaking Characteristics of Three-Ribbed Ridge Nonplanar Polycrystalline Diamond Compact Cutter and Its Application in Plastic Formations","authors":"Lian Chen, Xiaoqiang Peng, Yong Li, Xindong Wang, Song Wang, Hua Luo, Qingchun Gao, Xiyan Song","doi":"10.2118/221492-pa","DOIUrl":"https://doi.org/10.2118/221492-pa","url":null,"abstract":"\u0000 To improve the penetration performance of polycrystalline diamond compact (PDC) bits in hard-to-penetrate plastic formations, the study of three-ribbed ridge nonplanar PDC cutter technology was carried out. The rock-breaking characteristics of nonplanar cutters are analyzed by comparison with conventional planar cutters and axe-shaped cutters through simulation and indoor experiments. The simulation results show that the planar cutter mainly breaks the rock by shearing and extruding, the axe-shaped cutter mainly breaks the rock by shearing, and the nonplanar PDC cutter mainly relies on its convex ridge structure to penetrate and split the rock. Nonplanar cutter has better penetration performance and cutting stability than planar cutters and axe-shaped cutters. The field test shows that the rate of penetration (ROP) and footage of the developed PDC bit with three-ribbed ridge nonplanar PDC cutters are increased by 133.66% and 176.11% compared with the conventional PDC bit in the hard-to-penetrate plastic formations. The use of nonplanar PDC cutters improves the working stability, rock-breaking efficiency, and service life of the bit. The special three-ribbed ridge structure of the nonplanar cutter has changed the interaction mode between the cutter and the rock. Its successful application in the plastic formation provides a reference for faster drilling of PDC bits in hard-to-penetrate plastic formations.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"54 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Probabilistic Assessment of Tophole Casing Design 关于顶孔套管设计的概率评估
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221493-pa
C. A. V. Várady Filho, J. Tenorio, E. T. Lima Junior, J. Santos, R. Dias, F. Cutrim
{"title":"On the Probabilistic Assessment of Tophole Casing Design","authors":"C. A. V. Várady Filho, J. Tenorio, E. T. Lima Junior, J. Santos, R. Dias, F. Cutrim","doi":"10.2118/221493-pa","DOIUrl":"https://doi.org/10.2118/221493-pa","url":null,"abstract":"\u0000 The casing system plays a crucial role in the integrity of oil and gas wells throughout their life cycle, providing tightness, stability, and support to external loads. In this paper, we apply reliability-based models to the design of tophole casing sections, taking into account uncertainties associated with soil behavior and casing tubulars manufacturing. Typical load scenarios are addressed to estimate the probability of the occurrence of different soil-casing system failure modes.\u0000 Reliability-based techniques stand out as powerful solutions for structural analysis and design. This work assesses soil characterization data from piezocone tests (CPTu) to statistically describe some mechanical parameters used for conductor and surface casing design. Random variables associated with the material and geometrical properties of tubulars are also considered, based on tubular manufacturing data presented in API TR 5C3 (2018). The probabilistic models are developed by using the first-order reliability method (FORM), an expedited and accurate optimization-based procedure, and applied to various load scenarios to estimate failure probability in the context of tophole casing design. Finite element (FE) modeling is used for the integrity analysis of the soil-casing system.\u0000 Analyses have been carried out considering the variability associated with undrained soil strength evaluated from CPTu data, as this soil strength is expected to be the most relevant random variable due to its spatial heterogeneity. Other random variables taken into account are the outer diameter and wall thickness of casing tubulars, resulting from the variability in the manufacturing process. Results indicate the feasibility and relevance of the proposed FE-FORM analysis in estimating the probability of the occurrence of relevant failure modes defined following the oil company’s internal regulations, regarding: conductor casing load capacity, surface casing triaxial stress in the noncemented region, and wellhead displacement. For the specific case studies presented, failure probabilities ranged from the order of magnitude of 10-9 to inadmissible values approaching 50%. Concerning how random variables affect the probabilistic response, it is observed that the outer diameter is not significant due to its low dispersion.\u0000 The novelty consists of considering both in-situ soil information and casing manufacturing data in a reliability-based framework that enables a more robust structural integrity analysis, supporting the decision-making process in tophole design. This solution was implemented in the operator’s internal software and uses real data. Quantifying the soil and casing uncertainties by using a robust statistical-based methodology brings new information, enhancing knowledge about the variability of design parameters and its influence on the structural response.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"24 66","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141699580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning–Assisted Parameter Monitoring and Optimization in Rotary-Percussive Drilling 深度学习辅助旋转冲击钻井参数监测与优化
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221497-pa
Wucheng Sun, Yakun Tao, Zhiming Wang, Songcheng Tan, Longchen Duan, Xiaohong Fang
{"title":"Deep Learning–Assisted Parameter Monitoring and Optimization in Rotary-Percussive Drilling","authors":"Wucheng Sun, Yakun Tao, Zhiming Wang, Songcheng Tan, Longchen Duan, Xiaohong Fang","doi":"10.2118/221497-pa","DOIUrl":"https://doi.org/10.2118/221497-pa","url":null,"abstract":"\u0000 As an efficient method for hard rock fracturing, rotary-percussive drilling has been widely used in various scenarios, especially deep drilling. Drilling parameter monitoring and control are necessary to ensure stable and efficient underground drilling processes. However, this may be more difficult in deep, harsh conditions.\u0000 In this paper, our goal is to establish models based on deep learning for drilling parameter monitoring and optimization. Combining impregnated diamond bits and granite rock samples, we conducted rotary-percussive rock drilling experiments using a rock drilling test rig. Real-time acoustic signals during rotary-percussive drilling were recorded, segmented, and transformed as spectra, which made up a drilling acoustic signal data set. Drilling parameters, including rotational speed (revolutions per minute, RPM), pump flow rate, pump pressure, weight on bit (WOB), torque, and rate of penetration (ROP), were logged in the meantime. Given the acoustic signal as input, we built 1D convolutional neural network (1D-CNN) models for drilling parameter prediction. The prediction results revealed the high efficiency and accuracy of 1D-CNN regression models based on deep learning in drilling condition monitoring. Batch normalization played an essential role in the regression model training processes. Given that these parameters have different units and dimensions, we compared models with different output modes to evaluate the multiparameter prediction performance of the 1D-CNN. Taking RPM, flow rate, pressure, and WOB as independent variables and torque and ROP as dependent variables, we developed a conditional variational autoencoder to realize optimization on drilling parameters based on expected drilling performance.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141716655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetics of In-Situ Calcium Magnesium Carbonate Precipitation and the Need for Desulfation in Seawater-Flooded Carbonate Reservoirs 海水淹没碳酸盐储层中碳酸钙镁原位沉淀动力学及脱硫需求
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221486-pa
Ali M. Al-Behadili, E. Mackay
{"title":"Kinetics of In-Situ Calcium Magnesium Carbonate Precipitation and the Need for Desulfation in Seawater-Flooded Carbonate Reservoirs","authors":"Ali M. Al-Behadili, E. Mackay","doi":"10.2118/221486-pa","DOIUrl":"https://doi.org/10.2118/221486-pa","url":null,"abstract":"\u0000 Mixing of incompatible injection and formation brines leads to the deposition of inorganic sulfate scales such as barite, celestite, and anhydrite in and around production wells. This process is well documented in seawater-flooded clastic reservoirs. One technique to avoid the resulting formation damage is to remove sulfate from seawater before injection using nanofiltration; however, this process is costly. We identify in this paper that it may not always be necessary in higher-temperature carbonate reservoirs.\u0000 In this paper, we describe the use of reactive transport reservoir simulation to investigate the impact of carbon dioxide (CO2) partitioning and changes in pH, ionic concentrations, and temperature on carbonate reactivity and the sulfate scaling risk in waterflooded carbonate reservoirs. Dissolution and precipitation of calcite, dolomite, gypsum, anhydrite, barite, and celestite are all modeled and found to be coupled through (various) common ion effects. The produced brine compositions are used to calculate the saturation ratios (SRs) and mass of precipitate that may form in the production system. Sensitivity to mineral reaction kinetics, particularly for the dolomite reactions, is accounted for.\u0000 Results identify that there is a strong relationship between calcite dissolution and dolomite (or other calcium/magnesium carbonate mineral) precipitation reactions, which drive each other and are affected by the availability of CO2 in the residual oil phase. This evolves over time, and as the thermal front propagates, impacts the concentration of calcium and magnesium in the brines traversing the reservoir. Temperature changes around the injection wellbore impact CO2 and mineral solubilities. The concentration of calcium in the displaced brine mix is thus determined more by contact with rock and temperature than by mixing between injection and formation brines. Depending on location relative to the thermal front, this may lead to gypsum or anhydrite precipitation, thereby stripping sulfate out of the injection brine. Thus, the sulfate scaling risk at the production wells is significantly reduced by this sulfate depletion process: The sulfate is stripped out of the seawater as it warms up in the reservoir before it mixes extensively with the formation water and significantly before any mixture of the two brines reaches the production zone. Thus, any loss of permeability is restricted to deep within the reservoir, where the pore volume (PV) that can accommodate mineral precipitation is very large.\u0000 In this work, we identify that for carbonate reservoirs above 90–100°C, stripping of sulfate due to coupled mineral reactions may reduce or eliminate the need for use of a sulfate reduction plant (SRP). The process is modeled for the first time, accounting for the impact of CO2 partitioning and thermal front propagation. Knowledge of the kinetics of calcium/magnesium carbonate precipitation is shown to be critical in predicting the extent of sulfat","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"12 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141701655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fracture Pre-propping and Temporary Plugging for Formation Damage Control in Deep Naturally Fractured Tight Reservoirs 在深层自然压裂致密油藏中进行压裂预处理和临时封堵以控制地层损害
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221489-pa
Chengyuan Xu, Jun Xie, Yili Kang, Lei Liu, Kun Guo, Dan Xue, Zhenjiang You
{"title":"Fracture Pre-propping and Temporary Plugging for Formation Damage Control in Deep Naturally Fractured Tight Reservoirs","authors":"Chengyuan Xu, Jun Xie, Yili Kang, Lei Liu, Kun Guo, Dan Xue, Zhenjiang You","doi":"10.2118/221489-pa","DOIUrl":"https://doi.org/10.2118/221489-pa","url":null,"abstract":"\u0000 To address the challenges of formation damage related to drill-in fluid loss into deep reservoir fractures during the drill-in process, we propose pre-propping and temporary plugging (PPTP) technology as an integrated solution in this paper. The PPTP approach combines high-strength bridging (HSB) materials with self-degrading filling (SDF) materials for efficient fracture plugging during lost circulation and effective fracture propping during oil and gas production from deep naturally fractured reservoirs. HSB material with good mechanical properties and SDF material with a controllable degradation cycle are developed and systematically evaluated. Fracture plugging tests and stress sensitivity experiments are conducted to evaluate the transformation effect of fracture plugging zones on fracture propping zones. Research results show that the developed HSB material exhibits a high compressive capacity and friction coefficient, which maintains a crushing rate below 3% under 60 MPa pressure and an average friction coefficient of 1.56. The degradation ratio of SDF material increases with temperature and pH value. The degradation cycle can reach up to 168 hours under the conditions of 120°C and pH = 13, which ensures continuous stable fracture plugging and lost-circulation control during the drill-in process. The PPTP technology, combining HSB and SDF components, efficiently plugs fractures with widths ranging from 1.0 mm to 3.0 mm, with a maximum plugging pressure of up to 10.16 MPa. HSB material props the fractures after SDF degrades, preventing fracture closure and converting the fracture plugging zone into a propping zone. The stress sensitivity damage of reservoir fractures can be effectively mitigated, preserving and enhancing fracture conductivity. Thus, the PPTP technology shows great potential for the integration solution of drill-in fluid loss and formation damage in deep naturally fractured reservoirs.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"40 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141709848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Early Determination Method of Reservoir Drive of Oil Deposits Based on Jamalbayli Indexes 基于贾迈勒拜利指数的油藏驱动力早期确定方法
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221480-pa
M. Jamalbayov, Betul Yildirim, Atilla Abdullazada
{"title":"The Early Determination Method of Reservoir Drive of Oil Deposits Based on Jamalbayli Indexes","authors":"M. Jamalbayov, Betul Yildirim, Atilla Abdullazada","doi":"10.2118/221480-pa","DOIUrl":"https://doi.org/10.2118/221480-pa","url":null,"abstract":"\u0000 Historically, the concept of “reservoir drive” aimed to simplify the mathematical modeling in reservoir engineering. Within this framework, the energy of the reservoir, particularly its aquifer, was idealized, leading to classifications such as “partial waterdrive,” “full waterdrive,” “gas cap drive,” and so forth. However, in reality, all existing energy sources interact simultaneously within reservoirs. Accordingly, this study aims to develop a new concept for a more realistic description of reservoir drive mechanisms and evaluation of reservoir energy performance. Numerous computer simulations have revealed a strong correlation between the ratio of relative changes in pore volume to relative changes in reservoir pressure and the reservoir’s energy nature and activity level. Moreover, the noted ratio did not depend on production technology, pressure/volume/temperature properties of hydrocarbon systems, rheological properties of reservoir rocks, or other factors. Based on this correlation, specific parameters termed as Jamalbayli Indexes (JI) have been identified to quantitatively describe reservoir energetic performance. JI consist of two parameters. One of them describes the relative change in pore volume per unit of relative change in reservoir pressure, and the second is the relative change in pore volume per unit of relative change in formation porosity. Here, “relative change” means a change in a parameter relative to its original value. These parameters are dimensionless and can have values around or equal to unity. A new conceptual framework for describing reservoir drive mechanisms based on JI has been formulated. According to this framework, reservoir drive mechanism is determined by comparing the computed JI values with unity rather than relying on subjective assessments of the trend of some functional dependencies. For the first time, it has become possible to express the reservoir drive performance quantitatively and determine the level of energy activity of the reservoirs with the help of JI. Additionally, a technique has been developed to evaluate the numerical values of JI for specific oil (including volatile oil) deposits based on the production data at any stage of production. The proposed methodology was tested using data from the eighth horizon of the Russkiy Khutor field in Russia. The test results not only confirmed the reliability of the obtained model but also demonstrated the adequacy of the proposed concept as a whole. Summarizing the results of other works by the authors, the adequacy of the proposed concept for both oil, gas, and gas condensate deposits has been confirmed. The research findings are expected to contribute to updating the traditional principles used for the mathematical problem statements in fluid flow in porous formations.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Laboratory Wettability Study of Sandstone, Tuff, and Shale Using 12-MHz NMR T1-T2 Fluid Typing: Insight of Shale 使用 12-MHz NMR T1-T2 流体类型对砂岩、凝灰岩和页岩进行实验室润湿性比较研究:页岩的启示
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221496-pa
Shuoshi Wang, Zheng Gu, Ping Guo, Wenhua Zhao
{"title":"Comparative Laboratory Wettability Study of Sandstone, Tuff, and Shale Using 12-MHz NMR T1-T2 Fluid Typing: Insight of Shale","authors":"Shuoshi Wang, Zheng Gu, Ping Guo, Wenhua Zhao","doi":"10.2118/221496-pa","DOIUrl":"https://doi.org/10.2118/221496-pa","url":null,"abstract":"\u0000 Wettability is a fundamental parameter significantly influencing fluid distributions, saturations, and relative permeability in porous media. Despite the availability of several wettability measurement techniques, obtaining consistent wettability index results, particularly in tight reservoirs, remains a challenge. Nevertheless, obtaining accurate wettability indices is crucial for gaining a more profound understanding of rock properties and precisely identifying and evaluating oil recovery processes. This study adapts T1-T2 nuclear magnetic resonance (NMR) in twin plugs (cores cut in half from the middle) style wettability measurement for different reservoirs. The fluid typing in different lithologies by T1-T2 NMR is proved to be effective by introducing D2O with a modified pressurization saturation process. Therefore, demarcating the regions requires multiple experiments, including sole brine, sole oil phase, and D2O imbibition processes, to define oil and water distribution regions. Such fluid typing ability enables better accuracy in wettability characterization. The weighing method shows good agreement with the T2 spectrum but lacks the ability to differentiate fluids. It is observed that the same fluid in various porous media displays different divisions of T1/T2 ratios. The wettability index of sandstone, tuff, and shale measured by weighing and T1-T2 NMR method are compared and studied to demonstrate the applicability of different methods. The weighing method and the NMR method, as modified-Amott methods, share the same fundamental principle but differ in their measurement techniques. This study’s T1-T2 NMR wettability indices are −0.52, 0.06, and 0.14, whereas the weighing wettability indices are −0.63, 0.07, and 0.34 of sandstone, tuff, and shale, respectively. In addition to the difference in shale wettability index, there are also differences in shale porosity measured by methods with/without the ability to differentiate the fluid types. The T1-T2 NMR method is more accurate in measuring the wettability of shale because it can distinguish among free water in pores, structural water, and clay-bound water in smectitic clay minerals. If the clay-related water is not treated properly, the hydrophilicity of the shale will be overestimated. Ultimately, four types of pores (water-wet, oil-wet, mixed-wet, and unconnected pores) are classified and quantified by the proposed NMR method.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141704498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life Cycle Optimization of CO2 Huff ’n’ Puff in Shale Oil Reservoir Coupling Carbon Tax and Embedded Discrete Fracture Model 结合碳税和嵌入式离散裂缝模型,优化页岩油藏中二氧化碳 "膨化 "的生命周期
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/219770-pa
Guangxuan Pan, Sen Wang, Jianchun Xu, Qihong Feng
{"title":"Life Cycle Optimization of CO2 Huff ’n’ Puff in Shale Oil Reservoir Coupling Carbon Tax and Embedded Discrete Fracture Model","authors":"Guangxuan Pan, Sen Wang, Jianchun Xu, Qihong Feng","doi":"10.2118/219770-pa","DOIUrl":"https://doi.org/10.2118/219770-pa","url":null,"abstract":"\u0000 Amidst escalating environmental pressures, energy-intensive industries, particularly the oil and gas sector, are compelled to transition toward sustainable and low-carbon operations, adhering to the constraints of the environmental economy. While conventional reservoirs have been extensively developed, unconventional reservoirs, such as shale reservoirs, are poised to be the focal point in the future. Carbon dioxide enhanced oil recovery (CO2-EOR), a potent development tool proven effective in shale reservoirs, offers substantial carbon storage potential while significantly augmenting production. However, prior studies have solely optimized shale oil CO2-EOR production based on a singular optimization algorithm with net present value (NPV) as the objective function. In this study, we propose a novel NPV concept incorporating a carbon tax, which incorporates carbon taxes regulated by governments or organizations, thereby guiding carbon offsetting in oil reservoirs. We employ the embedded discrete fracture model (EDFM) approach to strike a balance between the accuracy of shale reservoir fracture simulation and computational efficiency, thereby enhancing timely technical guidance in the field. Subsequently, we compare the existing mainstream reservoir optimization algorithms and introduce a novel life cycle CO2 huff ’n’ puff (HnP) optimization workflow based on low-carbon NPV. The optimized NPV of the target reservoir witnessed an increase of 116.30%, while the optimization time was reduced by 89.47%, and the CO2 storage capacity was augmented by 12.58%. The workflow accelerates the simulation of the CO2 HnP in shale reservoirs, optimizing the production efficiency and CO2 storage capacity of shale reservoirs, and facilitating comprehensive and efficient production guidance for the production site.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"2010 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Real-Time Production Forecasting Model for Complex Subsurface Flow Systems with Variable Length Input Sequences 针对具有变长输入序列的复杂地下流动系统的动态实时生产预测模型
SPE Journal Pub Date : 2024-07-01 DOI: 10.2118/221482-pa
Ziming Xu, Juliana Y. Leung
{"title":"Dynamic Real-Time Production Forecasting Model for Complex Subsurface Flow Systems with Variable Length Input Sequences","authors":"Ziming Xu, Juliana Y. Leung","doi":"10.2118/221482-pa","DOIUrl":"https://doi.org/10.2118/221482-pa","url":null,"abstract":"\u0000 Production time-series forecasting for newly drilled wells or those with limited flow and pressure historical data poses a significant challenge, and this problem is exacerbated by the complexities and uncertainties encountered in fractured subsurface systems. While many existing models rely on static features for prediction, the production data progressively offer more informative insights as production unfolds. Leveraging ongoing production data can enhance forecasting accuracy over time. However, effectively integrating the production stream data presents significant model training and updating complexities. We propose two innovative methods to address this challenge: masked recurrent alignment (MRA) and masked encoding decoding (MED). These methods enable the model to continually update its predictions based on historical data. In addition, by incorporating sequence padding and masking, our model can handle inputs of varying lengths without trimming, thereby avoiding the potential loss of valuable training samples. We implement these models with gated recurrent unit (GRU) and evaluate their performance in a case study involving 6,154 shale gas wells in the Central Montney Region. The data set encompasses 39 production-related features, including reservoir properties, completion, and wellhead information. Performance evaluation is based on root mean square error (RMSE) to predict 36-month production from 200 wells during testing. Empirical findings highlight the efficacy of the proposed models in handling challenges associated with variable-length input sequences, showcasing their superior performance. Our research emphasizes the value of including shorter time-series segments, often overlooked, to improve predictive accuracy, especially in scenarios with limited training samples.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"259 2‐3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141708343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Systematical Review of the Largest Alkali-Surfactant-Polymer Flood Project in the World: From Laboratory to Pilots and Field Application 世界上最大的碱性表面活性剂-聚合物洪流项目的系统回顾:从实验室到试点和实地应用
SPE Journal Pub Date : 2024-06-01 DOI: 10.2118/215058-pa
Yunan Wei, Xiaoguang Lu, Jianhong Xu
{"title":"A Systematical Review of the Largest Alkali-Surfactant-Polymer Flood Project in the World: From Laboratory to Pilots and Field Application","authors":"Yunan Wei, Xiaoguang Lu, Jianhong Xu","doi":"10.2118/215058-pa","DOIUrl":"https://doi.org/10.2118/215058-pa","url":null,"abstract":"\u0000 This paper presents a systematical review of the largest alkali-surfactant-polymer (ASP) flood project in the world, applied to the largest oil field in China. First, reservoir and fluid characteristics are highlighted. Next, project history is summarized, including laboratory studies, pilot tests, industrial-scale tests, and fieldwide application. Third, typical ASP flooding performance and reservoir management measures from more than 30 years’ experience are presented. In addition, performances of ASP flood and polymer flood in the same field, which is also the largest project in the world, are compared.\u0000 The Lamadian-Saertu-Xingshugang (La-Sa-Xing) Field in the Daqing Field Complex (including the La-Sa-Xing Field and three smaller satellite fields) is the largest oil field in China. The Upper Cretaceous Saertu-Putaohua-Gaotaizi reservoir has an average porosity of 25% and average permeability of 610 md. The reservoir consists of more than 100 flow units with an average gross and net thickness of 1,377 ft and 394 ft, respectively, and is characterized by significant heterogeneity, both vertically and laterally. The reservoir lies at a depth of 2,566–2,585 ft true vertical depth (TVD), with original reservoir pressure of 1,534–1,740 psi and a reservoir temperature of 113–122°F. Crude oil has an API gravity of 33° and a viscosity of 9 cp at reservoir conditions. The discussed ASP flood project mainly targets high-quality reservoir sands. The field was brought on-stream in 1960 with immediate waterflood. Crossflow and water breakthrough became common issues during water injection, calling for a suitable enhanced oil recovery (EOR) method. The Saertu-Putaohua-Gaotaizi reservoir features favorable conditions for ASP flood, such as temperature, viscosity, permeability, and formation water salinity (7000 mg/L). In addition, the heterogeneous reservoir (permeability variation coefficient of 0.6–0.8) is suitable for ASP flood. ASP flood was studied in the laboratory from 1987 to 1993, followed by five small-scale pilots from 1994 to 1999, all being successful with incremental recoveries of ~20% stock tank oil initially in place (STOIIP). As a result, industrial-scale tests were conducted from 2000 to 2007, resulting in substantial improvement in production from ~4,000 BOPD to greater than 19,000 BOPD. Encouraged by those successes, the ASP project was expanded to fieldwide since December 2007, which is the largest ASP flood project in the industry worldwide. By 2021, daily oil production by ASP flood had reached 96,000 BOPD through 4,825 producers and 4,825 injectors. The actual average incremental recovery factor is 20% over waterflood and 8–10% over polymer flood, resulting in ultimate recovery factor of >60%. Zonal injection and profile modification are effective measures to further improve sweeping efficiency. Scaling is the major challenge during the operation of ASP flood, which is mitigated or remediated by adopting weak alkali ASP, progressive","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"20 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信