{"title":"The retrospective double-entry of a long-term ecological dataset","authors":"","doi":"10.1016/j.ecoinf.2024.102873","DOIUrl":"10.1016/j.ecoinf.2024.102873","url":null,"abstract":"<div><div>Research data are almost always assumed to be reliable, but there are many reasons why data can be unreliable. Manual data-entry error rates are typically observed in the 1 to 4 % range and can be statistically impactful. This has encouraged techniques to mitigate the risk of transcription error, among which the double-entry method remains the most effective. Unfortunately, these techniques are rarely applied retrospectively to datasets collected years or decades ago, including to highly valued long-term ecological datasets that continue to contribute to active research.</div><div>This study defines an approach for the retrospective double-entry of long-term ecological datasets and then applies it to one such dataset: the 34-year (and counting) Mt Mary Lizard Survey. Software was used to execute comparisons of c.760,000 individual data value pairs across c.56,000 records to corroborate matching values and identify unmatched values.</div><div>The key findings are: a) from 760,967 value pair comparisons between the originally keyed dataset and a retrospectively re-keyed version of the same dataset, 18,637 differences (2.5 %) were detected, b) almost half (48 %) of the differences detected were intentional alterations made to the original dataset during data curation efforts, c) data differences were not uniformly distributed across data fields but concentrated in the animal identity data field, and d) a three-way comparison of the identity field corroborated a recorded value in almost all cases.</div><div>Landmark, long-term ecological studies continue to be the evidentiary framework for ecological science. However, data quality metrics—including how faithfully digital transcriptions represent the originally recorded values—are rarely reported. Given that manual transcription errors are virtually assured and the realistic possibility of post hoc, intentional alterations made during data curation, one could legitimately ask whether a manually transcribed and curated dataset is a genuine representation of the originally recorded values. The retrospective double-entry approach is one way to find out.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating infiltration processes in hybrid downscaling methods to estimate sub-surface soil moisture","authors":"","doi":"10.1016/j.ecoinf.2024.102875","DOIUrl":"10.1016/j.ecoinf.2024.102875","url":null,"abstract":"<div><div>Soil moisture is a key variable in the water, energy, and carbon cycles. Mapping sub-surface soil moisture with fine spatial resolution requires integrating downscaling approaches and process-based models. However, the effectiveness of hybrid methods, such as regression kriging (RK), in enhancing soil moisture estimates through process-based parameter predictions remains inconclusive. This study aims to integrate infiltration processes into downscaling models to predict 1-km multi-layer soil moisture, while comparing performance of nonlinear and linear models, and evaluating RK improvements. Random forests (RF) and generalized linear model (GLM) were used to downscale surface soil moisture (0–5 cm) from 36-km Soil Moisture Active Passive satellite products to 1 km across the Qinghai-Tibet Plateau. Next, the soil moisture analytical relationship (SMAR) model was applied to simulate infiltration processes and obtain site-scale parameters. RK variants (RFRK and GLMRK) were applied to jointly predict the spatial distribution of multiple infiltration parameters, which were used in SMAR at 1-km grids to estimate sub-surface soil moisture (5–40 cm). The results showed that parameter calibration significantly enhanced sub-surface soil moisture simulation, reducing root mean square error (RMSE) by 61.2 % to 69.8 %, from 0.09 to 0.03. RF outperformed GLM across all depth intervals, providing higher prediction accuracy (average RMSE, RF: 0.07; GLM: 0.09). Moreover, RK enhanced the Nash-Sutcliffe efficiency coefficient (RFRK: 0.34; GLMRK: 0.28) and coefficient of determination (RFRK: 0.5; GLMRK: 0.38) by 7.7 %–13.3 % and 2.2 %–2.4 %. This study provides a reference for mapping multi-layer soil moisture through the integration of data-driven and knowledge-driven approaches in regional-scale study areas.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A deep learning pipeline for time-lapse camera monitoring of insects and their floral environments","authors":"","doi":"10.1016/j.ecoinf.2024.102861","DOIUrl":"10.1016/j.ecoinf.2024.102861","url":null,"abstract":"<div><div>Arthropods, including insects, represent the most diverse group and contribute significantly to animal biomass. Automatic monitoring of insects and other arthropods enables quick and efficient observation and management of ecologically and economically important targets such as pollinators, natural enemies, disease vectors, and agricultural pests. The integration of cameras and computer vision facilitates innovative monitoring approaches for agriculture, ecology, entomology, evolution, and biodiversity. However, studying insects and their interactions with flowers and vegetation in natural environments remains challenging, even with automated camera monitoring.</div><div>This paper presents a comprehensive methodology to monitor abundance and diversity of arthropods in the wild and to quantify floral cover as a key resource. We apply the methods across more than 10 million images recorded over two years using 48 insect camera traps placed in three main habitat types. The cameras monitor arthropods, including insect visits, on a specific mix of <em>Sedum</em> plant species with white, yellow and red/pink colored of flowers. The proposed deep-learning pipeline estimates flower cover and detects and classifies arthropod taxa from time-lapse recordings. However, the flower cover serves only as an estimate to correlate insect activity with the flowering plants.Color and semantic segmentation with DeepLabv3 are combined to estimate the percent cover of flowers of different colors. Arthropod detection incorporates motion-informed enhanced images and object detection with You-Only-Look-Once (YOLO), followed by filtering stationary objects to minimize double counting of non-moving animals and erroneous background detections. This filtering approach has been demonstrated to significantly decrease the incidence of false positives, since arthropods, occur in less than 3% of the captured images.</div><div>The final step involves grouping arthropods into 19 taxonomic classes. Seven state-of-the-art models were trained and validated, achieving <span><math><mrow><mi>F</mi><mn>1</mn></mrow></math></span>-scores ranging from 0.81 to 0.89 in classification of arthropods. Among these, the final selected model, EfficientNetB4, achieved an 80% average precision on randomly selected samples when applied to the complete pipeline, which includes detection, filtering, and classification of arthropod images collected in 2021. As expected during the beginning and end of the season, reduced flower cover correlates with a noticeable drop in arthropod detections. The proposed method offers a cost-effective approach to monitoring diverse arthropod taxa and flower cover in natural environments using time-lapse camera recordings.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A complete framework for hyperbolic acoustic localization with application to northern bobwhite covey calls","authors":"","doi":"10.1016/j.ecoinf.2024.102871","DOIUrl":"10.1016/j.ecoinf.2024.102871","url":null,"abstract":"<div><div>Passive monitoring of wildlife has proven to be a highly effective tool in management and conservation. This work describes an end-to-end system for acoustic localization within the context of a specific use case. The system is described in terms of its constituent modules and the functionality of each module, as it relates to the use case of Northern bobwhite (<em>Colinus virginianus</em>) localization, is detailed. First, we address the field deployment of acoustic recorders in terms of optimal configuration, spacing, and number in a manner that is at once utilitarian and mathematically rigorous. Then, we propose novel methods used to automatically detect the calls from recordings, match the detected calls across recordings, and calculate the time difference of arrivals (TDOAs). Finally, a new hyperbolic localization approach is presented that uses the TDOAs to estimate the position of the calls. Each module is formulated within a theoretical framework, implemented numerically in an efficient manner, and shown to compare favorably against existing methods. Moreover, the performance of the complete system is evaluated using field recorded data and the impact of environmental factors such as field relief, vegetation features, and wind speed are illustrated and discussed. We assert and demonstrate that the factor with the most immediate and profound impact on advancing the state of the art in acoustic monitoring of wildlife is open access to high-volume, diverse field data that is accompanied by high-quality ground truth.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of the conservation effectiveness of nature reserves on the Qinghai-Tibet plateau using human activity and habitat quality indicators","authors":"","doi":"10.1016/j.ecoinf.2024.102872","DOIUrl":"10.1016/j.ecoinf.2024.102872","url":null,"abstract":"<div><div>The establishment of nature reserves (NRs) is widely acknowledged as one of the most effective measures to mitigate the threats on habitat quality (HB) posed by human activities (HAs). Precise and scientific assessment of the effectiveness of NRs holds crucial significance in improving management and promoting conservation. In this study, key indicators were creatively selected and applied to the propensity score matching (PSM) model to comprehensively assess the variations in HAs and HB within national NRs on the Qinghai-Tibet Plateau. The results indicated that between 2000 and 2020, 67.4 % of the NR area experienced a decline in HA-related impacts, while 53.8 % of the area saw improvements in HB. Additionally, with the exclusion of external environmental factors, in 2020, the difference in HAs and HB between NRs and non-protected areas was −0.131 and 0.179, respectively. Finally, based on an assessment of the overall conservation effectiveness, seven NRs were classified as “Class I\", 18 as “Class II\", and another seven as “Class III\". These results not only confirmed the effectiveness of national NRs in alleviating anthropogenic pressure and enhancing HB but also served as an important basis for accurately assessing the conservation effectiveness of other NRs and formulating more scientifically sound and appropriate management policies.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning approach for water quality predictions based on multispectral satellite imageries","authors":"","doi":"10.1016/j.ecoinf.2024.102868","DOIUrl":"10.1016/j.ecoinf.2024.102868","url":null,"abstract":"<div><div>Water quality analysis is a vital component of the water resources management and has to be undertaken promptly to make sure environmental regulations are being followed and to eliminate any pollution that could harm the ecosystem. The main objective of this study to retrieve and map the water quality parameters from Sentinel-2 and ResourceSat-2 [Linear Imaging Self-Scanning Sensor (LISS)–IV] multi-spectral satellite data, using Support Vector Machines (SVM), Random Forests (RF), and Multi-Linear regression (MLR) models. This study represents the first attempt to demonstrate the applicability and performance of high-spatial resolution ResourceSat-2 remote sensing satellite's LISS-4 sensor, which operates in three spectral bands in the Visible and Near Infrared Region (VNIR), to predict water quality. Spectral bands of each satellite were used as independent parameter to generate the algorithms for pH, Dissolved Oxygen (DO), Total Suspended Solids (TSS) and Total Dissolved Solids (TDS). The model performance was evaluated based on coefficient of determination (R<sup>2</sup>), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the Root Mean Square Error (RMSE) statistical indices. The result of this study indicates that the SVM yielded the highest accuracy followed by the RF and MLR. The R<sup>2</sup>, MAE, MAPE and RMSE ranged between 0.78 and 0.99, 0.049–0.24, 0.01–10.9 % and 0.05–0.28 respectively for all the four SVM models across both the sensors. Based on the spatial trend Sentinel-2 was found to be slightly superior to the ResourceSat-2 (LISS-IV) for the estimation of water quality parameters owing to its superior spectral and radiometric resolution, nevertheless ResourceSat-2 (LISS-IV) has its own advantage in terms of high spatial resolution. The results of this study highlight the high potential of machine learning models in conjunction with multispectral satellite images to manage water quality.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporally weighted regression (STWR) for assessing Lyme disease and landscape fragmentation dynamics in Connecticut towns","authors":"","doi":"10.1016/j.ecoinf.2024.102870","DOIUrl":"10.1016/j.ecoinf.2024.102870","url":null,"abstract":"<div><div>Understanding the landscape determinants that escalate Lyme disease (LD) risk through various times and regions is vital for appraising disease susceptibility and shaping precise intervention and prevention strategies. This research introduces a novel data-driven framework to identify potential indicators from an extensive array of potential variables. We then deployed an advanced spatiotemporal weighted regression (STWR) model to investigate how landscape fragmentation metrics correlate with the spatiotemporal variability of LD incidence rate in Connecticut towns. We proposed a data-driven filtering framework to select five variables from a large data pool. The analysis unveils that LD incidence rates exhibit heightened sensitivity to proportional or exponential shifts in landscape fragmentation; logarithmic and squared transformations of landscape metrics shed light on lesser effects and venue for potential parabolic relationships. Observations also disclose significant spatial trends, showing elevated LD incidence rates in locales with vast, uninterrupted deciduous forests, alongside contributions from wetland ecosystem-related variables to the rise in disease occurrence. Compared with Geographically Weighted Regression (GWR), the STWR model proved more potent and reliable with higher R<sup>2</sup> and lower estimated standard errors (SE). The STWR model is highly flexible in terms of spatiotemporal variations in data. The STWR results further reversely indicate the changes made by the Center for Disease and Prevention (CDC) in the case classification of LD in 2008. The integration of data-driven and model-driven approaches in this study delivers a robust framework that combines empirical pattern detection with theoretical insight, enhancing the robustness and predictive power of ecological studies.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impacts of LULC changes on runoff from rivers through a coupled SWAT and BiLSTM model: A case study in Zhanghe River Basin, China","authors":"","doi":"10.1016/j.ecoinf.2024.102866","DOIUrl":"10.1016/j.ecoinf.2024.102866","url":null,"abstract":"<div><div>Changes in river runoff have a significant impact on the sustainable use of water resources in a watershed, and these changes are closely linked to variations in land use/land cover (LULC). This research explores an innovative approach in the Zhang River Basin (ZRB), China, by coupling a concept-based hydrological model, the Soil and Water Assessment Tool (SWAT), with a deep-learning model, the Bidirectional Long Short-Term Memory Network (Bi-LSTM), to improve the accuracy of river runoff simulations. By analyzing LULC changes in 2002, 2012, and 2022, this study developed three SWAT models and three coupled SWAT-BiLSTM models to quantitatively assess the impacts of these changes on river runoff through eight LULC scenarios. The findings revealed significant LULC changes from 2002 to 2022, with cropland and grassland areas decreasing while forest and urban land areas increased. The total area of grassland, forest, and cropland made up over 93 % of the basin, indicating active land type conversions. Calibration and validation results demonstrated that the SWAT-BiLSTM model outperformed the conventional SWAT model, yielding higher accuracy in runoff simulations. Specifically, the SWAT-BiLSTM model achieved R<sup>2</sup> values of 0.89 and 0.90 during calibration and validation, compared to the SWAT model's R<sup>2</sup> values of 0.76 and 0.79. Scenario analyses indicated that expansions in farmland, grassland, and urban areas were correlated with increased river runoff, while an expansion in forested areas led to reduced runoff. Notably, urban land changes had the most pronounced impact on runoff, emphasizing the need for careful runoff management and flood risk mitigation in urban planning. By combining SWAT and Bi-LSTM models, this study provides an innovative assessment of the impact of LULC changes on water resources in the ZRB. The results offer valuable insights for water resource management, LULC optimization, and flood risk management, highlighting the potential application of deep learning techniques in hydrological simulation. This research serves as a scientific basis for policy-making and sustainable land use planning in the ZRB and similar regions.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient approximate Bayesian inference for quantifying uncertainty in multiscale animal movement models","authors":"","doi":"10.1016/j.ecoinf.2024.102853","DOIUrl":"10.1016/j.ecoinf.2024.102853","url":null,"abstract":"<div><div>It is becoming increasingly important for wildlife managers and conservation ecologists to understand which resources are selected or avoided by an animal and how to best predict future spatial distributions of animal populations in the long term. However, inferring the patterns of space use by animals is a challenging multiscale inference problem, and formal uncertainty quantification of parameter estimates is an essential component of models that provide useful predictions across scales. In this study, we develop an approximate Bayesian inference framework for step selection models of animal movement which quantifies the uncertainty in estimates of resource selection and avoidance parameters within the Bayesian paradigm. The framework allows joint inference of movement and resource selection parameters of animals and is multiscale in that parameters inferred from fine scale movement steps scale to produce predictions of long-term patterns of space use. Our analysis focuses on simulated movement data in which we test the performance of our framework by altering movement parameters in the data-generating process. In our simulations, individuals respond to two environmental covariates and we employ all combinations of positive and negative selection coefficients corresponding to attraction to an environmental feature and avoidance of an environmental feature, respectively. In all scenarios, we recover the movement parameters used for the simulation of synthetic movement data using variational inference, an approximate Bayesian method, allowing us to formally quantify the uncertainty associated with each parameter for varying data set sizes. Our framework successfully recovered all combinations of movement parameters of the simulated data and accurately captured their posterior distributions given the available data suggesting that the framework is reliable and suitable for inferring how animals select resources and move on a landscape.</div><div>Notably, our analysis shows that even for reasonably large data sets (circa 10,000 observations) there can still be considerable uncertainty associated with resource selection parameters which can in turn lead to inaccurate predictions of long term space use if not properly incorporated into the modelling approach. To further illustrate the utility of our approach, we also present a case study of its application to an example data set consisting of GPS locations of a fisher (<em>Martes pennanti</em>). Our approach will be of interest to ecologists looking to address conservation questions such as when and where animals are likely to spend most of their time. Furthermore, the approach could be used to predict new suitable areas for conservation based on how GPS collared animals use or avoid resources while including uncertainty around the predictions, thereby helping to make informed management decisions.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Jump around: Selecting Markov Chain Monte Carlo parameters and diagnostics for improved food web model quality and ecosystem representation","authors":"","doi":"10.1016/j.ecoinf.2024.102865","DOIUrl":"10.1016/j.ecoinf.2024.102865","url":null,"abstract":"<div><div>Capturing ecological data variability in food web models is an important step for improving model representation of empirical systems. One approach is to use linear inverse modelling and Markov Chain Monte Carlo (LIM-MCMC) techniques to set up an inverse LIM problem using empirical data constraints, and then sample multiple plausible food webs from the inverse problem using an MCMC algorithm. We describe the set of plausible food webs as an ‘ensemble’ of solutions to the inverse problem sampled with the LIM-MCMC algorithm. The extent of data variability eventually integrated into an ensemble depends on how well the LIM-MCMC algorithm samples the solution space. Algorithm quality can be adjusted via user-defined parameters describing starting points, jump sizes, and number of iterations or food webs produced. However, little information exists on how each LIM-MCMC algorithm parameter affects the degree of empirical data variability introduced into the ensemble. Further, post hoc algorithm quality diagnostics with commonly used trace plots and the coefficient of variation (CoV) rarely address critical aspects of algorithm quality, such as (1) if the returned ensemble successfully targeted the solution space distribution (stationarity), (2) correlation between ensemble solutions (mixing), and (3) if the ensemble contains enough solutions to adequately capture input data variability (sampling efficiency). Therefore, we used several established MCMC convergence diagnostics to (1) quantify how algorithm parameters affect ensemble flow values and if these differences propagate to ecological indicators and (2) evaluate algorithm quality and compare to current evaluation and ecosystem modelling methods. We applied 30 LIM-MCMC algorithm combinations of varying starting points, jump sizes, and number of iterations to solve food web ensembles from a single food web model. We analysed ensembles with Ecological Network Analysis (ENA) to calculate indicators describing system function. Results show that LIM-MCMC algorithm parameters, in particular the jump size, affect ensemble flow values, which propagate to ecological indicators describing different ecosystem function of the same model. Thereafter, comparisons of post hoc diagnostics show that MCMC convergence diagnostics provided more robust estimates of algorithm quality than trace plots and CoV. Together, these findings underpin several novel recommendations to enhance LIM-MCMC algorithm parameter selection and quality assessments applicable to any ecological ensemble network study.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}